|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +from typing import Any, List, Optional, Sequence, Tuple, Union |
| 4 | + |
| 5 | +import torch |
| 6 | +from torchvision._utils import StrEnum |
| 7 | +from torchvision.transforms import InterpolationMode # TODO: this needs to be moved out of transforms |
| 8 | + |
| 9 | +from ._datapoint import Datapoint, FillTypeJIT |
| 10 | + |
| 11 | + |
| 12 | +class BoundingBoxFormat(StrEnum): |
| 13 | + XYXY = StrEnum.auto() |
| 14 | + XYWH = StrEnum.auto() |
| 15 | + CXCYWH = StrEnum.auto() |
| 16 | + |
| 17 | + |
| 18 | +class BoundingBox(Datapoint): |
| 19 | + format: BoundingBoxFormat |
| 20 | + spatial_size: Tuple[int, int] |
| 21 | + |
| 22 | + @classmethod |
| 23 | + def _wrap(cls, tensor: torch.Tensor, *, format: BoundingBoxFormat, spatial_size: Tuple[int, int]) -> BoundingBox: |
| 24 | + bounding_box = tensor.as_subclass(cls) |
| 25 | + bounding_box.format = format |
| 26 | + bounding_box.spatial_size = spatial_size |
| 27 | + return bounding_box |
| 28 | + |
| 29 | + def __new__( |
| 30 | + cls, |
| 31 | + data: Any, |
| 32 | + *, |
| 33 | + format: Union[BoundingBoxFormat, str], |
| 34 | + spatial_size: Tuple[int, int], |
| 35 | + dtype: Optional[torch.dtype] = None, |
| 36 | + device: Optional[Union[torch.device, str, int]] = None, |
| 37 | + requires_grad: Optional[bool] = None, |
| 38 | + ) -> BoundingBox: |
| 39 | + tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) |
| 40 | + |
| 41 | + if isinstance(format, str): |
| 42 | + format = BoundingBoxFormat.from_str(format.upper()) |
| 43 | + |
| 44 | + return cls._wrap(tensor, format=format, spatial_size=spatial_size) |
| 45 | + |
| 46 | + @classmethod |
| 47 | + def wrap_like( |
| 48 | + cls, |
| 49 | + other: BoundingBox, |
| 50 | + tensor: torch.Tensor, |
| 51 | + *, |
| 52 | + format: Optional[BoundingBoxFormat] = None, |
| 53 | + spatial_size: Optional[Tuple[int, int]] = None, |
| 54 | + ) -> BoundingBox: |
| 55 | + return cls._wrap( |
| 56 | + tensor, |
| 57 | + format=format if format is not None else other.format, |
| 58 | + spatial_size=spatial_size if spatial_size is not None else other.spatial_size, |
| 59 | + ) |
| 60 | + |
| 61 | + def __repr__(self, *, tensor_contents: Any = None) -> str: # type: ignore[override] |
| 62 | + return self._make_repr(format=self.format, spatial_size=self.spatial_size) |
| 63 | + |
| 64 | + def horizontal_flip(self) -> BoundingBox: |
| 65 | + output = self._F.horizontal_flip_bounding_box( |
| 66 | + self.as_subclass(torch.Tensor), format=self.format, spatial_size=self.spatial_size |
| 67 | + ) |
| 68 | + return BoundingBox.wrap_like(self, output) |
| 69 | + |
| 70 | + def vertical_flip(self) -> BoundingBox: |
| 71 | + output = self._F.vertical_flip_bounding_box( |
| 72 | + self.as_subclass(torch.Tensor), format=self.format, spatial_size=self.spatial_size |
| 73 | + ) |
| 74 | + return BoundingBox.wrap_like(self, output) |
| 75 | + |
| 76 | + def resize( # type: ignore[override] |
| 77 | + self, |
| 78 | + size: List[int], |
| 79 | + interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, |
| 80 | + max_size: Optional[int] = None, |
| 81 | + antialias: Optional[Union[str, bool]] = "warn", |
| 82 | + ) -> BoundingBox: |
| 83 | + output, spatial_size = self._F.resize_bounding_box( |
| 84 | + self.as_subclass(torch.Tensor), |
| 85 | + spatial_size=self.spatial_size, |
| 86 | + size=size, |
| 87 | + max_size=max_size, |
| 88 | + ) |
| 89 | + return BoundingBox.wrap_like(self, output, spatial_size=spatial_size) |
| 90 | + |
| 91 | + def crop(self, top: int, left: int, height: int, width: int) -> BoundingBox: |
| 92 | + output, spatial_size = self._F.crop_bounding_box( |
| 93 | + self.as_subclass(torch.Tensor), self.format, top=top, left=left, height=height, width=width |
| 94 | + ) |
| 95 | + return BoundingBox.wrap_like(self, output, spatial_size=spatial_size) |
| 96 | + |
| 97 | + def center_crop(self, output_size: List[int]) -> BoundingBox: |
| 98 | + output, spatial_size = self._F.center_crop_bounding_box( |
| 99 | + self.as_subclass(torch.Tensor), format=self.format, spatial_size=self.spatial_size, output_size=output_size |
| 100 | + ) |
| 101 | + return BoundingBox.wrap_like(self, output, spatial_size=spatial_size) |
| 102 | + |
| 103 | + def resized_crop( |
| 104 | + self, |
| 105 | + top: int, |
| 106 | + left: int, |
| 107 | + height: int, |
| 108 | + width: int, |
| 109 | + size: List[int], |
| 110 | + interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, |
| 111 | + antialias: Optional[Union[str, bool]] = "warn", |
| 112 | + ) -> BoundingBox: |
| 113 | + output, spatial_size = self._F.resized_crop_bounding_box( |
| 114 | + self.as_subclass(torch.Tensor), self.format, top, left, height, width, size=size |
| 115 | + ) |
| 116 | + return BoundingBox.wrap_like(self, output, spatial_size=spatial_size) |
| 117 | + |
| 118 | + def pad( |
| 119 | + self, |
| 120 | + padding: Union[int, Sequence[int]], |
| 121 | + fill: Optional[Union[int, float, List[float]]] = None, |
| 122 | + padding_mode: str = "constant", |
| 123 | + ) -> BoundingBox: |
| 124 | + output, spatial_size = self._F.pad_bounding_box( |
| 125 | + self.as_subclass(torch.Tensor), |
| 126 | + format=self.format, |
| 127 | + spatial_size=self.spatial_size, |
| 128 | + padding=padding, |
| 129 | + padding_mode=padding_mode, |
| 130 | + ) |
| 131 | + return BoundingBox.wrap_like(self, output, spatial_size=spatial_size) |
| 132 | + |
| 133 | + def rotate( |
| 134 | + self, |
| 135 | + angle: float, |
| 136 | + interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, |
| 137 | + expand: bool = False, |
| 138 | + center: Optional[List[float]] = None, |
| 139 | + fill: FillTypeJIT = None, |
| 140 | + ) -> BoundingBox: |
| 141 | + output, spatial_size = self._F.rotate_bounding_box( |
| 142 | + self.as_subclass(torch.Tensor), |
| 143 | + format=self.format, |
| 144 | + spatial_size=self.spatial_size, |
| 145 | + angle=angle, |
| 146 | + expand=expand, |
| 147 | + center=center, |
| 148 | + ) |
| 149 | + return BoundingBox.wrap_like(self, output, spatial_size=spatial_size) |
| 150 | + |
| 151 | + def affine( |
| 152 | + self, |
| 153 | + angle: Union[int, float], |
| 154 | + translate: List[float], |
| 155 | + scale: float, |
| 156 | + shear: List[float], |
| 157 | + interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST, |
| 158 | + fill: FillTypeJIT = None, |
| 159 | + center: Optional[List[float]] = None, |
| 160 | + ) -> BoundingBox: |
| 161 | + output = self._F.affine_bounding_box( |
| 162 | + self.as_subclass(torch.Tensor), |
| 163 | + self.format, |
| 164 | + self.spatial_size, |
| 165 | + angle, |
| 166 | + translate=translate, |
| 167 | + scale=scale, |
| 168 | + shear=shear, |
| 169 | + center=center, |
| 170 | + ) |
| 171 | + return BoundingBox.wrap_like(self, output) |
| 172 | + |
| 173 | + def perspective( |
| 174 | + self, |
| 175 | + startpoints: Optional[List[List[int]]], |
| 176 | + endpoints: Optional[List[List[int]]], |
| 177 | + interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, |
| 178 | + fill: FillTypeJIT = None, |
| 179 | + coefficients: Optional[List[float]] = None, |
| 180 | + ) -> BoundingBox: |
| 181 | + output = self._F.perspective_bounding_box( |
| 182 | + self.as_subclass(torch.Tensor), |
| 183 | + format=self.format, |
| 184 | + spatial_size=self.spatial_size, |
| 185 | + startpoints=startpoints, |
| 186 | + endpoints=endpoints, |
| 187 | + coefficients=coefficients, |
| 188 | + ) |
| 189 | + return BoundingBox.wrap_like(self, output) |
| 190 | + |
| 191 | + def elastic( |
| 192 | + self, |
| 193 | + displacement: torch.Tensor, |
| 194 | + interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, |
| 195 | + fill: FillTypeJIT = None, |
| 196 | + ) -> BoundingBox: |
| 197 | + output = self._F.elastic_bounding_box( |
| 198 | + self.as_subclass(torch.Tensor), self.format, self.spatial_size, displacement=displacement |
| 199 | + ) |
| 200 | + return BoundingBox.wrap_like(self, output) |
0 commit comments