@@ -159,14 +159,27 @@ class SqueezeNet1_1_Weights(WeightsEnum):
159
159
def squeezenet1_0 (
160
160
* , weights : Optional [SqueezeNet1_0_Weights ] = None , progress : bool = True , ** kwargs : Any
161
161
) -> SqueezeNet :
162
- r """SqueezeNet model architecture from the `" SqueezeNet: AlexNet-level
163
- accuracy with 50x fewer parameters and <0.5MB model size"
162
+ """SqueezeNet model architecture from the `SqueezeNet: AlexNet-level
163
+ accuracy with 50x fewer parameters and <0.5MB model size
164
164
<https://arxiv.org/abs/1602.07360>`_ paper.
165
+
165
166
The required minimum input size of the model is 21x21.
166
167
167
168
Args:
168
- weights (SqueezeNet1_0_Weights, optional): The pretrained weights for the model
169
- progress (bool): If True, displays a progress bar of the download to stderr
169
+ weights (:class:`~torchvision.models.SqueezeNet1_0_Weights`, optional): The
170
+ pretrained weights to use. See
171
+ :class:`~torchvision.models.SqueezeNet1_0_Weights` below for
172
+ more details, and possible values. By default, no pre-trained
173
+ weights are used.
174
+ progress (bool, optional): If True, displays a progress bar of the
175
+ download to stderr. Default is True.
176
+ **kwargs: parameters passed to the ``torchvision.models.squeezenet.SqueezeNet``
177
+ base class. Please refer to the `source code
178
+ <https://github.com/pytorch/vision/blob/main/torchvision/models/squeezenet.py>`_
179
+ for more details about this class.
180
+
181
+ .. autoclass:: torchvision.models.SqueezeNet1_0_Weights
182
+ :members:
170
183
"""
171
184
weights = SqueezeNet1_0_Weights .verify (weights )
172
185
return _squeezenet ("1_0" , weights , progress , ** kwargs )
@@ -176,15 +189,28 @@ def squeezenet1_0(
176
189
def squeezenet1_1 (
177
190
* , weights : Optional [SqueezeNet1_1_Weights ] = None , progress : bool = True , ** kwargs : Any
178
191
) -> SqueezeNet :
179
- r """SqueezeNet 1.1 model from the `official SqueezeNet repo
192
+ """SqueezeNet 1.1 model from the `official SqueezeNet repo
180
193
<https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_.
194
+
181
195
SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
182
196
than SqueezeNet 1.0, without sacrificing accuracy.
183
197
The required minimum input size of the model is 17x17.
184
198
185
199
Args:
186
- weights (SqueezeNet1_1_Weights, optional): The pretrained weights for the model
187
- progress (bool): If True, displays a progress bar of the download to stderr
200
+ weights (:class:`~torchvision.models.SqueezeNet1_1_Weights`, optional): The
201
+ pretrained weights to use. See
202
+ :class:`~torchvision.models.SqueezeNet1_1_Weights` below for
203
+ more details, and possible values. By default, no pre-trained
204
+ weights are used.
205
+ progress (bool, optional): If True, displays a progress bar of the
206
+ download to stderr. Default is True.
207
+ **kwargs: parameters passed to the ``torchvision.models.squeezenet.SqueezeNet``
208
+ base class. Please refer to the `source code
209
+ <https://github.com/pytorch/vision/blob/main/torchvision/models/squeezenet.py>`_
210
+ for more details about this class.
211
+
212
+ .. autoclass:: torchvision.models.SqueezeNet1_1_Weights
213
+ :members:
188
214
"""
189
215
weights = SqueezeNet1_1_Weights .verify (weights )
190
216
return _squeezenet ("1_1" , weights , progress , ** kwargs )
0 commit comments