@@ -40,6 +40,7 @@ architectures for image classification:
40
40
- `MNASNet `_
41
41
- `EfficientNet `_
42
42
- `RegNet `_
43
+ - `VisionTransformer `_
43
44
44
45
You can construct a model with random weights by calling its constructor:
45
46
@@ -82,6 +83,10 @@ You can construct a model with random weights by calling its constructor:
82
83
regnet_x_8gf = models.regnet_x_8gf()
83
84
regnet_x_16gf = models.regnet_x_16gf()
84
85
regnet_x_32gf = models.regnet_x_32gf()
86
+ vit_b_16 = models.vit_b_16()
87
+ vit_b_32 = models.vit_b_32()
88
+ vit_l_16 = models.vit_l_16()
89
+ vit_l_32 = models.vit_l_32()
85
90
86
91
We provide pre-trained models, using the PyTorch :mod: `torch.utils.model_zoo `.
87
92
These can be constructed by passing ``pretrained=True ``:
@@ -125,6 +130,10 @@ These can be constructed by passing ``pretrained=True``:
125
130
regnet_x_8gf = models.regnet_x_8gf(pretrained = True )
126
131
regnet_x_16gf = models.regnet_x_16gf(pretrainedTrue)
127
132
regnet_x_32gf = models.regnet_x_32gf(pretrained = True )
133
+ vit_b_16 = models.vit_b_16(pretrained = True )
134
+ vit_b_32 = models.vit_b_32(pretrained = True )
135
+ vit_l_16 = models.vit_l_16(pretrained = True )
136
+ vit_l_32 = models.vit_l_32(pretrained = True )
128
137
129
138
Instancing a pre-trained model will download its weights to a cache directory.
130
139
This directory can be set using the `TORCH_HOME ` environment variable. See
@@ -233,6 +242,10 @@ regnet_y_3_2gf 78.948 94.576
233
242
regnet_y_8gf 80.032 95.048
234
243
regnet_y_16gf 80.424 95.240
235
244
regnet_y_32gf 80.878 95.340
245
+ vit_b_16 81.072 95.318
246
+ vit_b_32 75.912 92.466
247
+ vit_l_16 79.662 94.638
248
+ vit_l_32 76.972 93.070
236
249
================================ ============= =============
237
250
238
251
@@ -250,6 +263,7 @@ regnet_y_32gf 80.878 95.340
250
263
.. _MNASNet : https://arxiv.org/abs/1807.11626
251
264
.. _EfficientNet : https://arxiv.org/abs/1905.11946
252
265
.. _RegNet : https://arxiv.org/abs/2003.13678
266
+ .. _VisionTransformer : https://arxiv.org/abs/2010.11929
253
267
254
268
.. currentmodule :: torchvision.models
255
269
@@ -433,6 +447,18 @@ RegNet
433
447
regnet_x_16gf
434
448
regnet_x_32gf
435
449
450
+ VisionTransformer
451
+ -----------------
452
+
453
+ .. autosummary ::
454
+ :toctree: generated/
455
+ :template: function.rst
456
+
457
+ vit_b_16
458
+ vit_b_32
459
+ vit_l_16
460
+ vit_l_32
461
+
436
462
Quantized Models
437
463
----------------
438
464
0 commit comments