Skip to content

Commit f584964

Browse files
NicolasHugfacebook-github-bot
authored andcommitted
[fbsync] allow len 1 sequences for fill with PIL (#7928)
Reviewed By: matteobettini Differential Revision: D49600777 fbshipit-source-id: 1b8731b6ef2e42feba0bde4dc7ee23bec6bfbe46
1 parent a63e524 commit f584964

File tree

3 files changed

+4
-42
lines changed

3 files changed

+4
-42
lines changed

test/test_transforms_v2_refactored.py

Lines changed: 0 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2581,9 +2581,6 @@ def test_transform(self, param, value, make_input):
25812581
# 2. the fill parameter only has an affect if we need padding
25822582
kwargs["size"] = [s + 4 for s in self.INPUT_SIZE]
25832583

2584-
if isinstance(input, PIL.Image.Image) and isinstance(value, (tuple, list)) and len(value) == 1:
2585-
pytest.xfail("F._pad_image_pil does not support sequences of length 1 for fill.")
2586-
25872584
if isinstance(input, tv_tensors.Mask) and isinstance(value, (tuple, list)):
25882585
pytest.skip("F.pad_mask doesn't support non-scalar fill.")
25892586

test/transforms_v2_dispatcher_infos.py

Lines changed: 0 additions & 37 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,3 @@
1-
import collections.abc
2-
31
import pytest
42
import torchvision.transforms.v2.functional as F
53
from torchvision import tv_tensors
@@ -112,32 +110,6 @@ def xfail_jit_python_scalar_arg(name, *, reason=None):
112110
multi_crop_skips.append(skip_dispatch_tv_tensor)
113111

114112

115-
def xfails_pil(reason, *, condition=None):
116-
return [
117-
TestMark(("TestDispatchers", test_name), pytest.mark.xfail(reason=reason), condition=condition)
118-
for test_name in ["test_dispatch_pil", "test_pil_output_type"]
119-
]
120-
121-
122-
def fill_sequence_needs_broadcast(args_kwargs):
123-
(image_loader, *_), kwargs = args_kwargs
124-
try:
125-
fill = kwargs["fill"]
126-
except KeyError:
127-
return False
128-
129-
if not isinstance(fill, collections.abc.Sequence) or len(fill) > 1:
130-
return False
131-
132-
return image_loader.num_channels > 1
133-
134-
135-
xfails_pil_if_fill_sequence_needs_broadcast = xfails_pil(
136-
"PIL kernel doesn't support sequences of length 1 for `fill` if the number of color channels is larger.",
137-
condition=fill_sequence_needs_broadcast,
138-
)
139-
140-
141113
DISPATCHER_INFOS = [
142114
DispatcherInfo(
143115
F.resized_crop,
@@ -159,14 +131,6 @@ def fill_sequence_needs_broadcast(args_kwargs):
159131
},
160132
pil_kernel_info=PILKernelInfo(F._pad_image_pil, kernel_name="pad_image_pil"),
161133
test_marks=[
162-
*xfails_pil(
163-
reason=(
164-
"PIL kernel doesn't support sequences of length 1 for argument `fill` and "
165-
"`padding_mode='constant'`, if the number of color channels is larger."
166-
),
167-
condition=lambda args_kwargs: fill_sequence_needs_broadcast(args_kwargs)
168-
and args_kwargs.kwargs.get("padding_mode", "constant") == "constant",
169-
),
170134
xfail_jit("F.pad only supports vector fills for list of floats", condition=pad_xfail_jit_fill_condition),
171135
xfail_jit_python_scalar_arg("padding"),
172136
],
@@ -181,7 +145,6 @@ def fill_sequence_needs_broadcast(args_kwargs):
181145
},
182146
pil_kernel_info=PILKernelInfo(F._perspective_image_pil),
183147
test_marks=[
184-
*xfails_pil_if_fill_sequence_needs_broadcast,
185148
xfail_jit_python_scalar_arg("fill"),
186149
],
187150
),

torchvision/transforms/_functional_pil.py

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -264,11 +264,13 @@ def _parse_fill(
264264
if isinstance(fill, (int, float)) and num_channels > 1:
265265
fill = tuple([fill] * num_channels)
266266
if isinstance(fill, (list, tuple)):
267-
if len(fill) != num_channels:
267+
if len(fill) == 1:
268+
fill = fill * num_channels
269+
elif len(fill) != num_channels:
268270
msg = "The number of elements in 'fill' does not match the number of channels of the image ({} != {})"
269271
raise ValueError(msg.format(len(fill), num_channels))
270272

271-
fill = tuple(fill)
273+
fill = tuple(fill) # type: ignore[arg-type]
272274

273275
if img.mode != "F":
274276
if isinstance(fill, (list, tuple)):

0 commit comments

Comments
 (0)