diff --git a/content/develop/ai/index.md b/content/develop/ai/index.md index f502fcf4dc..c1fa2a220f 100644 --- a/content/develop/ai/index.md +++ b/content/develop/ai/index.md @@ -34,6 +34,13 @@ This page organized into a few sections depending on what you’re trying to do: 1. [**Search with vectors**]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#search-with-vectors" >}}): Redis supports several advanced querying strategies with vector fields including k-nearest neighbor ([KNN]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#knn-vector-search" >}})), [vector range queries]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#vector-range-queries" >}}), and [metadata filters]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#filters" >}}). 1. [**Configure vector queries at runtime**]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#runtime-query-parameters" >}}). Select the best filter mode to optimize query execution. +#### Learn how to index and query vector embeddings +* [redis-py (Python)]({{< relref "/develop/clients/redis-py/vecsearch" >}}) +* [NRedisStack (C#/.NET)]({{< relref "/develop/clients/dotnet/vecsearch" >}}) +* [node-redis (JavaScript)]({{< relref "/develop/clients/nodejs/vecsearch" >}}) +* [Jedis (Java)]({{< relref "/develop/clients/jedis/vecsearch" >}}) +* [go-redis (Go)]({{< relref "/develop/clients/go/vecsearch" >}}) + ## Concepts Learn to perform vector search and use gateways and semantic caching in your AI/ML projects. @@ -71,6 +78,7 @@ Retrieval Augmented Generation (aka RAG) is a technique to enhance the ability o #### Agents AI agents can act autonomously to plan and execute tasks for the user. +* [Redis Notebooks for LangGraph](https://github.com/redis-developer/langgraph-redis/tree/main/examples) * [Notebook to get started with LangGraph and agents](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/00_langgraph_redis_agentic_rag.ipynb) * [Build a collaborative movie recommendation system using Redis for data storage, CrewAI for agent-based task execution, and LangGraph for workflow management.](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/01_crewai_langgraph_redis.ipynb) * [Full-Featured Agent Architecture](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/02_full_featured_agent.ipynb) @@ -119,6 +127,7 @@ Need a deeper-dive through different use cases and topics? ## Ecosystem integrations +* [LangGraph & Redis: Build smarter AI agents with memory & persistence](https://redis.io/blog/langgraph-redis-build-smarter-ai-agents-with-memory-persistence/) * [Amazon Bedrock setup guide]({{< relref "/integrate/amazon-bedrock/set-up-redis" >}}) * [LangChain Redis Package: Smarter AI apps with advanced vector storage and faster caching](https://redis.io/blog/langchain-redis-partner-package/) * [LlamaIndex integration for Redis as a vector store](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/RedisIndexDemo.html)