|
| 1 | +use impl_new_derive::ImplNew; |
| 2 | +use ndarray::Array1; |
| 3 | +use ndarray_rand::RandomExt; |
| 4 | +use rand_distr::{Distribution, Normal}; |
| 5 | + |
| 6 | +use crate::stochastic::{process::cpoisson::CompoundPoisson, Sampling, Sampling3D}; |
| 7 | + |
| 8 | +/// Kou process |
| 9 | +/// |
| 10 | +/// https://www.columbia.edu/~sk75/MagSci02.pdf |
| 11 | +/// |
| 12 | +#[derive(ImplNew)] |
| 13 | +pub struct KOU<D> |
| 14 | +where |
| 15 | + D: Distribution<f64> + Send + Sync, |
| 16 | +{ |
| 17 | + pub alpha: f64, |
| 18 | + pub sigma: f64, |
| 19 | + pub lambda: f64, |
| 20 | + pub theta: f64, |
| 21 | + pub n: usize, |
| 22 | + pub x0: Option<f64>, |
| 23 | + pub t: Option<f64>, |
| 24 | + pub m: Option<usize>, |
| 25 | + pub cpoisson: CompoundPoisson<D>, |
| 26 | +} |
| 27 | + |
| 28 | +impl<D> Sampling<f64> for KOU<D> |
| 29 | +where |
| 30 | + D: Distribution<f64> + Send + Sync, |
| 31 | +{ |
| 32 | + fn sample(&self) -> Array1<f64> { |
| 33 | + let dt = self.t.unwrap_or(1.0) / (self.n - 1) as f64; |
| 34 | + let mut merton = Array1::<f64>::zeros(self.n); |
| 35 | + merton[0] = self.x0.unwrap_or(0.0); |
| 36 | + let gn = Array1::random(self.n - 1, Normal::new(0.0, dt.sqrt()).unwrap()); |
| 37 | + |
| 38 | + for i in 1..self.n { |
| 39 | + let [.., jumps] = self.cpoisson.sample(); |
| 40 | + |
| 41 | + merton[i] = merton[i - 1] |
| 42 | + + (self.alpha * self.sigma.powf(2.0) / 2.0 - self.lambda * self.theta) * dt |
| 43 | + + self.sigma * gn[i - 1] |
| 44 | + + jumps.sum(); |
| 45 | + } |
| 46 | + |
| 47 | + merton |
| 48 | + } |
| 49 | + |
| 50 | + /// Number of time steps |
| 51 | + fn n(&self) -> usize { |
| 52 | + self.n |
| 53 | + } |
| 54 | + |
| 55 | + /// Number of samples for parallel sampling |
| 56 | + fn m(&self) -> Option<usize> { |
| 57 | + self.m |
| 58 | + } |
| 59 | +} |
| 60 | + |
| 61 | +#[cfg(test)] |
| 62 | +mod tests { |
| 63 | + use crate::{ |
| 64 | + plot_1d, |
| 65 | + stats::double_exp::DoubleExp, |
| 66 | + stochastic::{process::poisson::Poisson, N, S0, X0}, |
| 67 | + }; |
| 68 | + |
| 69 | + use super::*; |
| 70 | + |
| 71 | + #[test] |
| 72 | + fn kou_length_equals_n() { |
| 73 | + let kou = KOU::new( |
| 74 | + 2.25, |
| 75 | + 2.5, |
| 76 | + 1.0, |
| 77 | + 1.0, |
| 78 | + N, |
| 79 | + Some(X0), |
| 80 | + Some(1.0), |
| 81 | + None, |
| 82 | + CompoundPoisson::new( |
| 83 | + None, |
| 84 | + DoubleExp::new(None, 2.0, 2.5), |
| 85 | + Poisson::new(1.0, None, Some(1.0 / N as f64), None), |
| 86 | + ), |
| 87 | + ); |
| 88 | + |
| 89 | + assert_eq!(kou.sample().len(), N); |
| 90 | + } |
| 91 | + |
| 92 | + #[test] |
| 93 | + fn kou_starts_with_x0() { |
| 94 | + let kou = KOU::new( |
| 95 | + 2.25, |
| 96 | + 2.5, |
| 97 | + 1.0, |
| 98 | + 1.0, |
| 99 | + N, |
| 100 | + Some(X0), |
| 101 | + Some(1.0), |
| 102 | + None, |
| 103 | + CompoundPoisson::new( |
| 104 | + None, |
| 105 | + DoubleExp::new(None, 2.0, 2.5), |
| 106 | + Poisson::new(1.0, None, Some(1.0 / N as f64), None), |
| 107 | + ), |
| 108 | + ); |
| 109 | + |
| 110 | + assert_eq!(kou.sample()[0], X0); |
| 111 | + } |
| 112 | + |
| 113 | + #[test] |
| 114 | + fn kou_plot() { |
| 115 | + let kou = KOU::new( |
| 116 | + 2.25, |
| 117 | + 2.5, |
| 118 | + 1.0, |
| 119 | + 1.0, |
| 120 | + N, |
| 121 | + Some(S0), |
| 122 | + Some(1.0), |
| 123 | + None, |
| 124 | + CompoundPoisson::new( |
| 125 | + None, |
| 126 | + DoubleExp::new(None, 2.0, 20.5), |
| 127 | + Poisson::new(1.0, None, Some(1.0 / N as f64), None), |
| 128 | + ), |
| 129 | + ); |
| 130 | + |
| 131 | + plot_1d!(kou.sample(), "KOU process"); |
| 132 | + } |
| 133 | + |
| 134 | + #[test] |
| 135 | + #[ignore = "Not implemented"] |
| 136 | + #[cfg(feature = "malliavin")] |
| 137 | + fn merton_malliavin() { |
| 138 | + unimplemented!() |
| 139 | + } |
| 140 | +} |
0 commit comments