Skip to content

Commit 14dcdd6

Browse files
committed
Implements miri shims for FUTEX_LOCK_PI, FUTEX_UNLOCK_PI
1 parent 05eb53f commit 14dcdd6

File tree

1 file changed

+143
-33
lines changed
  • src/tools/miri/src/shims/unix/linux

1 file changed

+143
-33
lines changed

src/tools/miri/src/shims/unix/linux/sync.rs

+143-33
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,6 @@
1+
use std::time::Duration;
2+
3+
use crate::shims::unix::env::EvalContextExt;
14
use crate::*;
25

36
/// Implementation of the SYS_futex syscall.
@@ -15,19 +18,18 @@ pub fn futex<'tcx>(
1518
// may or may not be left out from the `syscall()` call.
1619
// Therefore we don't use `check_arg_count` here, but only check for the
1720
// number of arguments to fall within a range.
18-
let [addr, op, val, ..] = args else {
21+
let [addr, op, ..] = args else {
1922
throw_ub_format!(
2023
"incorrect number of arguments for `futex` syscall: got {}, expected at least 3",
2124
args.len()
2225
);
2326
};
2427

25-
// The first three arguments (after the syscall number itself) are the same to all futex operations:
26-
// (int *addr, int op, int val).
28+
// The first two arguments (after the syscall number itself) are the same to all futex operations:
29+
// (int *addr, int op).
2730
// We checked above that these definitely exist.
2831
let addr = this.read_pointer(addr)?;
2932
let op = this.read_scalar(op)?.to_i32()?;
30-
let val = this.read_scalar(val)?.to_i32()?;
3133

3234
// This is a vararg function so we have to bring our own type for this pointer.
3335
let addr = this.ptr_to_mplace(addr, this.machine.layouts.i32);
@@ -39,6 +41,49 @@ pub fn futex<'tcx>(
3941
let futex_wake = this.eval_libc_i32("FUTEX_WAKE");
4042
let futex_wake_bitset = this.eval_libc_i32("FUTEX_WAKE_BITSET");
4143
let futex_realtime = this.eval_libc_i32("FUTEX_CLOCK_REALTIME");
44+
let futex_lock_pi = this.eval_libc_i32("FUTEX_LOCK_PI");
45+
let futex_unlock_pi = this.eval_libc_i32("FUTEX_UNLOCK_PI");
46+
let futex_waiters = this.eval_libc_u32("FUTEX_WAITERS");
47+
48+
// Ok(None) for EINVAL set, Ok(Some(None)) for no timeout (infinity), Ok(Some(Some(...))) for a timeout.
49+
// Forgive me, I don't want to create an enum for this return value.
50+
fn read_timeout<'tcx>(
51+
this: &mut MiriInterpCx<'tcx>,
52+
arg3: &OpTy<'tcx>,
53+
use_realtime_clock: bool,
54+
use_absolute_time: bool,
55+
dest: &MPlaceTy<'tcx>,
56+
) -> InterpResult<'tcx, Option<Option<(TimeoutClock, TimeoutAnchor, Duration)>>> {
57+
let timeout = this.deref_pointer_as(arg3, this.libc_ty_layout("timespec"))?;
58+
interp_ok(Some(if this.ptr_is_null(timeout.ptr())? {
59+
None
60+
} else {
61+
let duration = match this.read_timespec(&timeout)? {
62+
Some(duration) => duration,
63+
None => {
64+
this.set_last_error(LibcError("EINVAL"))?;
65+
this.write_scalar(Scalar::from_target_isize(-1, this), dest)?;
66+
return interp_ok(None);
67+
}
68+
};
69+
let timeout_clock = if use_realtime_clock {
70+
this.check_no_isolation(
71+
"`futex` syscall with `op=FUTEX_WAIT` and non-null timeout with `FUTEX_CLOCK_REALTIME`",
72+
)?;
73+
TimeoutClock::RealTime
74+
} else {
75+
TimeoutClock::Monotonic
76+
};
77+
let timeout_anchor = if use_absolute_time {
78+
// FUTEX_WAIT_BITSET uses an absolute timestamp.
79+
TimeoutAnchor::Absolute
80+
} else {
81+
// FUTEX_WAIT uses a relative timestamp.
82+
TimeoutAnchor::Relative
83+
};
84+
Some((timeout_clock, timeout_anchor, duration))
85+
}))
86+
}
4287

4388
// FUTEX_PRIVATE enables an optimization that stops it from working across processes.
4489
// Miri doesn't support that anyway, so we ignore that flag.
@@ -74,41 +119,25 @@ pub fn futex<'tcx>(
74119
u32::MAX
75120
};
76121

122+
// We ensured at least 4 arguments above so these work.
123+
let val = this.read_scalar(&args[2])?.to_i32()?;
124+
let Some(timeout) = read_timeout(
125+
this,
126+
&args[3],
127+
op & futex_realtime == futex_realtime,
128+
wait_bitset,
129+
dest,
130+
)?
131+
else {
132+
return interp_ok(());
133+
};
134+
77135
if bitset == 0 {
78136
this.set_last_error(LibcError("EINVAL"))?;
79137
this.write_scalar(Scalar::from_target_isize(-1, this), dest)?;
80138
return interp_ok(());
81139
}
82140

83-
let timeout = this.deref_pointer_as(&args[3], this.libc_ty_layout("timespec"))?;
84-
let timeout = if this.ptr_is_null(timeout.ptr())? {
85-
None
86-
} else {
87-
let duration = match this.read_timespec(&timeout)? {
88-
Some(duration) => duration,
89-
None => {
90-
this.set_last_error(LibcError("EINVAL"))?;
91-
this.write_scalar(Scalar::from_target_isize(-1, this), dest)?;
92-
return interp_ok(());
93-
}
94-
};
95-
let timeout_clock = if op & futex_realtime == futex_realtime {
96-
this.check_no_isolation(
97-
"`futex` syscall with `op=FUTEX_WAIT` and non-null timeout with `FUTEX_CLOCK_REALTIME`",
98-
)?;
99-
TimeoutClock::RealTime
100-
} else {
101-
TimeoutClock::Monotonic
102-
};
103-
let timeout_anchor = if wait_bitset {
104-
// FUTEX_WAIT_BITSET uses an absolute timestamp.
105-
TimeoutAnchor::Absolute
106-
} else {
107-
// FUTEX_WAIT uses a relative timestamp.
108-
TimeoutAnchor::Relative
109-
};
110-
Some((timeout_clock, timeout_anchor, duration))
111-
};
112141
// There may be a concurrent thread changing the value of addr
113142
// and then invoking the FUTEX_WAKE syscall. It is critical that the
114143
// effects of this and the other thread are correctly observed,
@@ -182,6 +211,15 @@ pub fn futex<'tcx>(
182211
// FUTEX_WAKE_BITSET: (int *addr, int op = FUTEX_WAKE, int val, const timespect *_unused, int *_unused, unsigned int bitset)
183212
// Same as FUTEX_WAKE, but allows you to specify a bitset to select which threads to wake up.
184213
op if op == futex_wake || op == futex_wake_bitset => {
214+
if args.len() < 3 {
215+
throw_ub_format!(
216+
"incorrect number of arguments for `futex` syscall with `op=FUTEX_WAKE`: got {}, expected at least 3",
217+
args.len()
218+
);
219+
}
220+
221+
let val = this.read_scalar(&args[2])?.to_i32()?;
222+
185223
let bitset = if op == futex_wake_bitset {
186224
let [_, _, _, timeout, uaddr2, bitset, ..] = args else {
187225
throw_ub_format!(
@@ -215,6 +253,78 @@ pub fn futex<'tcx>(
215253
}
216254
this.write_scalar(Scalar::from_target_isize(n, this), dest)?;
217255
}
256+
op if op == futex_lock_pi => {
257+
if args.len() < 4 {
258+
throw_ub_format!(
259+
"incorrect number of arguments for `futex` syscall with `op=FUTEX_LOCK_PI`: got {}, expected at least 4",
260+
args.len()
261+
);
262+
}
263+
264+
// FUTEX_LOCK_PI uses absolute CLOCK_REALTIME timestamp.
265+
let Some(timeout) = read_timeout(this, &args[3], true, true, dest)? else {
266+
return interp_ok(());
267+
};
268+
269+
// The same as above. This makes modifications visible to us.
270+
this.atomic_fence(AtomicFenceOrd::SeqCst)?;
271+
272+
// For bitand working properly, we read it as a u32.
273+
let futex_val = this.read_scalar_atomic(&addr, AtomicReadOrd::Relaxed)?.to_u32()?;
274+
275+
if futex_val == 0 {
276+
// 0 means unlocked - then lock it.
277+
//
278+
// The tid of the owner is store to *addr.
279+
// N.B. it is not the same as posix thread id.
280+
let tid = this.linux_gettid()?;
281+
this.write_scalar_atomic(tid, &addr, AtomicWriteOrd::Relaxed)?;
282+
} else {
283+
// Other values mean locked.
284+
//
285+
// Mark the futex as contended.
286+
this.write_scalar_atomic(
287+
Scalar::from_u32(futex_val | futex_waiters),
288+
&addr,
289+
AtomicWriteOrd::Relaxed,
290+
)?;
291+
292+
// Put ourselves into the wait queue.
293+
this.futex_wait(
294+
addr_usize,
295+
u32::MAX,
296+
timeout,
297+
Scalar::from_target_isize(0, this), // retval_succ
298+
Scalar::from_target_isize(-1, this), // retval_timeout
299+
dest.clone(),
300+
this.eval_libc("ETIMEDOUT"),
301+
);
302+
}
303+
304+
// This ensures all loads afterwards get updated value of *addr.
305+
this.atomic_fence(AtomicFenceOrd::SeqCst)?;
306+
307+
// FUTEX_LOCK_PI returns 0 on success.
308+
this.write_scalar(Scalar::from_target_isize(0, this), dest)?;
309+
}
310+
op if op == futex_unlock_pi => {
311+
// This ensures all modifications happen before.
312+
this.atomic_fence(AtomicFenceOrd::SeqCst)?;
313+
314+
// Clear locked state.
315+
this.write_scalar_atomic(Scalar::from_u32(0), &addr, AtomicWriteOrd::Relaxed)?;
316+
317+
// This ensures all loads afterwards get updated value of *addr.
318+
// There are no preemptions so no one can wake after we set the futex to unlocked
319+
// and before we use futex_wake to wake one waiter.
320+
this.atomic_fence(AtomicFenceOrd::SeqCst)?;
321+
322+
// Unlocking wakes zero or one waiters.
323+
let _ = this.futex_wake(addr_usize, u32::MAX)?;
324+
325+
// FUTEX_UNLOCK_PI returns 0 on success.
326+
this.write_scalar(Scalar::from_target_isize(0, this), dest)?;
327+
}
218328
op => throw_unsup_format!("Miri does not support `futex` syscall with op={}", op),
219329
}
220330

0 commit comments

Comments
 (0)