|
| 1 | +# SPDX-License-Identifier: Apache-2.0 |
| 2 | + |
| 3 | +import itertools |
| 4 | +from typing import Iterable, Optional, Tuple |
| 5 | + |
| 6 | +import torch |
| 7 | +from torch import nn |
| 8 | + |
| 9 | +from sglang.srt.layers.pooler import Pooler, PoolingType |
| 10 | +from sglang.srt.layers.quantization.base_config import QuantizationConfig |
| 11 | +from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding |
| 12 | +from sglang.srt.model_executor.forward_batch_info import ForwardBatch |
| 13 | +from sglang.srt.model_loader.weight_utils import default_weight_loader |
| 14 | +from sglang.srt.models.bert import BertEncoder |
| 15 | + |
| 16 | +RobertaConfig = None |
| 17 | + |
| 18 | + |
| 19 | +class RobertaEmbedding(nn.Module): |
| 20 | + |
| 21 | + def __init__(self, config: RobertaConfig): |
| 22 | + super().__init__() |
| 23 | + self.size = config.hidden_size |
| 24 | + self.word_embeddings = VocabParallelEmbedding( |
| 25 | + config.vocab_size, config.hidden_size |
| 26 | + ) |
| 27 | + self.padding_idx = config.pad_token_id |
| 28 | + self.position_embeddings = nn.Embedding( |
| 29 | + config.max_position_embeddings, |
| 30 | + config.hidden_size, |
| 31 | + padding_idx=self.padding_idx, |
| 32 | + ) |
| 33 | + |
| 34 | + self.token_type_embeddings = nn.Embedding( |
| 35 | + config.type_vocab_size, config.hidden_size |
| 36 | + ) |
| 37 | + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
| 38 | + |
| 39 | + self.position_ids = nn.Parameter( |
| 40 | + torch.empty((1, config.max_position_embeddings)), |
| 41 | + ) |
| 42 | + |
| 43 | + self.position_embedding_type = config.position_embedding_type |
| 44 | + if self.position_embedding_type != "absolute": |
| 45 | + raise ValueError( |
| 46 | + "Only 'absolute' position_embedding_type" + " is supported" |
| 47 | + ) |
| 48 | + |
| 49 | + def forward( |
| 50 | + self, |
| 51 | + input_ids: torch.Tensor, |
| 52 | + seq_lens: torch.Tensor, |
| 53 | + position_ids: torch.Tensor, |
| 54 | + inputs_embeds=None, |
| 55 | + token_type_ids: Optional[torch.Tensor] = None, |
| 56 | + ) -> torch.Tensor: |
| 57 | + input_shape = input_ids.size() |
| 58 | + inputs_embeds = self.word_embeddings(input_ids) |
| 59 | + |
| 60 | + # adpated from vllm: https://github.com/vllm-project/vllm/commit/4a18fd14ba4a349291c798a16bf62fa8a9af0b6b/vllm/model_executor/models/roberta.py |
| 61 | + |
| 62 | + pos_list = [] |
| 63 | + token_list = [] |
| 64 | + offset = 0 |
| 65 | + for seq_len in seq_lens: |
| 66 | + pos_list.append(position_ids[offset : offset + seq_len]) |
| 67 | + token_list.append(input_ids[offset : offset + seq_len]) |
| 68 | + offset += seq_len |
| 69 | + |
| 70 | + new_pos_list = [] |
| 71 | + for positions, tokens in zip(pos_list, token_list): |
| 72 | + # Verify assumption that incoming position are |
| 73 | + # always a sequence from 0 to N. |
| 74 | + expected_pos = torch.arange( |
| 75 | + positions.size()[0], dtype=torch.long, device=inputs_embeds.device |
| 76 | + ) |
| 77 | + assert torch.equal(positions, expected_pos) |
| 78 | + new_pos_list.append( |
| 79 | + create_position_ids_from_input_ids(tokens, self.padding_idx) |
| 80 | + ) |
| 81 | + position_ids = torch.cat(new_pos_list) |
| 82 | + |
| 83 | + # Position embeddings. |
| 84 | + position_embeddings = self.position_embeddings(position_ids) |
| 85 | + if token_type_ids is None: |
| 86 | + token_type_ids = torch.zeros( |
| 87 | + input_shape, dtype=torch.long, device=inputs_embeds.device |
| 88 | + ) |
| 89 | + |
| 90 | + token_type_embeddings = self.token_type_embeddings(token_type_ids) |
| 91 | + embeddings = inputs_embeds + token_type_embeddings + position_embeddings |
| 92 | + embeddings = self.LayerNorm(embeddings) |
| 93 | + return embeddings |
| 94 | + |
| 95 | + |
| 96 | +class XLMRobertaModel(nn.Module): |
| 97 | + def __init__( |
| 98 | + self, |
| 99 | + *, |
| 100 | + config: RobertaConfig, |
| 101 | + quant_config: Optional[QuantizationConfig] = None, |
| 102 | + prefix: str = "", |
| 103 | + ): |
| 104 | + super().__init__() |
| 105 | + |
| 106 | + self.config = config |
| 107 | + self.embeddings = RobertaEmbedding(config) |
| 108 | + self.encoder = BertEncoder(config=config, quant_config=quant_config, prefix="") |
| 109 | + self.pooler = Pooler(pooling_type=PoolingType.CLS, normalize=True) |
| 110 | + |
| 111 | + @torch.no_grad() |
| 112 | + def forward( |
| 113 | + self, |
| 114 | + input_ids: torch.Tensor, |
| 115 | + positions: torch.Tensor, |
| 116 | + forward_batch: ForwardBatch, |
| 117 | + input_embeds: torch.Tensor = None, |
| 118 | + get_embedding: bool = False, |
| 119 | + ) -> torch.Tensor: |
| 120 | + assert get_embedding == True |
| 121 | + # Your tokenized IDs |
| 122 | + |
| 123 | + hidden_states = self.embeddings( |
| 124 | + input_ids=input_ids, |
| 125 | + position_ids=positions, |
| 126 | + seq_lens=forward_batch.seq_lens, |
| 127 | + ) |
| 128 | + |
| 129 | + hidden_states = self.encoder(hidden_states, forward_batch=forward_batch) |
| 130 | + pooler_out = self.pooler(hidden_states, forward_batch) |
| 131 | + return pooler_out |
| 132 | + |
| 133 | + def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): |
| 134 | + stacked_params_mapping = [ |
| 135 | + # (param_name, shard_name, shard_id) |
| 136 | + ("qkv_proj", "query", "q"), |
| 137 | + ("qkv_proj", "key", "k"), |
| 138 | + ("qkv_proj", "value", "v"), |
| 139 | + ] |
| 140 | + |
| 141 | + params_dict = dict(self.named_parameters()) |
| 142 | + for name, loaded_weight in weights: |
| 143 | + name = name.replace("self", "self_attn") |
| 144 | + if "pooler" in name: |
| 145 | + continue |
| 146 | + for param_name, weight_name, shard_id in stacked_params_mapping: |
| 147 | + |
| 148 | + if weight_name not in name: |
| 149 | + continue |
| 150 | + name = name.replace(weight_name, param_name) |
| 151 | + # Skip loading extra bias for GPTQ models. |
| 152 | + if name.endswith(".bias") and name not in params_dict: |
| 153 | + continue |
| 154 | + param = params_dict[name] |
| 155 | + weight_loader = param.weight_loader |
| 156 | + weight_loader(param, loaded_weight, shard_id) |
| 157 | + break |
| 158 | + else: |
| 159 | + # Skip loading extra bias for GPTQ models. |
| 160 | + if name.endswith(".bias") and name not in params_dict: |
| 161 | + continue |
| 162 | + param = params_dict[name] |
| 163 | + weight_loader = getattr(param, "weight_loader", default_weight_loader) |
| 164 | + weight_loader(param, loaded_weight) |
| 165 | + |
| 166 | + |
| 167 | +# Adapted from transformers |
| 168 | +def create_position_ids_from_input_ids( |
| 169 | + input_ids, padding_idx, past_key_values_length=0 |
| 170 | +): |
| 171 | + mask = input_ids.ne(padding_idx).int() |
| 172 | + incremental_indices = ( |
| 173 | + torch.cumsum(mask, dim=0).type_as(mask) + past_key_values_length |
| 174 | + ) * mask |
| 175 | + return incremental_indices.long() + padding_idx |
| 176 | + |
| 177 | + |
| 178 | +EntryClass = [XLMRobertaModel] |
0 commit comments