You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Once document preparation microservice for Milvus is started, user can use below command to invoke the microservice to convert the document to embedding and save to the database.
102
64
@@ -179,7 +141,7 @@ Note: If you specify "table_strategy=llm", You should first start TGI Service, p
179
141
curl -X POST -H "Content-Type: application/json" -d '{"path":"/home/user/doc/your_document_name","process_table":true,"table_strategy":"hq"}' http://localhost:6010/v1/dataprep/ingest
180
142
```
181
143
182
-
### 3.2 Consume get API
144
+
### 2.2 Consume get API
183
145
184
146
To get uploaded file structures, use the following command:
185
147
@@ -208,7 +170,7 @@ Then you will get the response JSON like this:
208
170
]
209
171
```
210
172
211
-
### 3.3 Consume delete API
173
+
### 2.3 Consume delete API
212
174
213
175
To delete uploaded file/link, use the following command.
214
176
@@ -234,7 +196,7 @@ curl -X POST \
234
196
http://localhost:6010/v1/dataprep/delete
235
197
```
236
198
237
-
## 🚀4. Troubleshooting
199
+
## 🚀3. Troubleshooting
238
200
239
201
1. If you get errors from TEI Embedding Endpoint like `cannot find this task, maybe it has expired` while uploading files, try to reduce the `chunk_size` in the curl command like below (the default chunk_size=1500).
Please refer to this [readme](../../third_parties/redis/src/README.md).
28
15
29
-
### 1.3 Setup Environment Variables
30
-
31
-
```bash
32
-
export your_ip=$(hostname -I | awk '{print $1}')
33
-
export REDIS_URL="redis://${your_ip}:6379"
34
-
export INDEX_NAME=${your_redis_index_name}
35
-
export PYTHONPATH=${path_to_comps}
36
-
```
37
-
38
-
### 1.4 Start LVM Microservice (Optional)
39
-
40
-
This is required only if you are going to consume the _generate_captions_ API of this microservice as in [Section 4.3](#43-consume-generate_captions-api).
41
-
42
-
Please refer to this [readme](../../lvms/src/README.md) to start the LVM microservice.
### 1.5 Start Data Preparation Microservice for Redis with Python Script
51
-
52
-
Start document preparation microservice for Redis with below command.
53
-
54
-
```bash
55
-
python prepare_videodoc_redis.py
56
-
```
57
-
58
-
## 🚀2. Start Microservice with Docker (Option 2)
59
-
60
-
### 2.1 Start Redis Stack Server
61
-
62
-
Please refer to this [readme](../../third_parties/redis/src/README.md).
63
-
64
-
### 2.2 Start LVM Microservice (Optional)
16
+
### 1.2 Start LVM Microservice (Optional)
65
17
66
18
This is required only if you are going to consume the _generate_captions_ API of this microservice as described [here](#43-consume-generate_captions-api).
Once this dataprep microservice is started, user can use the below commands to invoke the microservice to convert images, videos, text, and PDF files to embeddings and save to the Redis vector store.
116
68
117
69
This microservice provides 3 different ways for users to ingest files into Redis vector store corresponding to the 3 use cases.
118
70
119
-
### 4.1 Consume _ingest_ API
71
+
### 3.1 Consume _ingest_ API
120
72
121
73
**Use case:** This API is used for videos accompanied by transcript files (`.vtt` format), images accompanied by text caption files (`.txt` format), and PDF files containing a mix of text and images.
122
74
@@ -163,7 +115,7 @@ curl -X POST \
163
115
http://localhost:6007/v1/dataprep/ingest
164
116
```
165
117
166
-
### 4.2 Consume _generate_transcripts_ API
118
+
### 3.2 Consume _generate_transcripts_ API
167
119
168
120
**Use case:** This API should be used when a video has meaningful audio or recognizable speech but its transcript file is not available, or for audio files with speech.
0 commit comments