@@ -1696,17 +1696,24 @@ static llama_state g_state;
1696
1696
// available llama models
1697
1697
enum e_model {
1698
1698
MODEL_UNKNOWN,
1699
+ MODEL_14M,
1699
1700
MODEL_17M,
1700
1701
MODEL_22M,
1701
1702
MODEL_33M,
1703
+ MODEL_70M,
1702
1704
MODEL_109M,
1703
1705
MODEL_137M,
1706
+ MODEL_160M,
1704
1707
MODEL_335M,
1708
+ MODEL_410M,
1705
1709
MODEL_0_5B,
1706
1710
MODEL_1B,
1711
+ MODEL_1_4B,
1707
1712
MODEL_2B,
1713
+ MODEL_2_8B,
1708
1714
MODEL_3B,
1709
1715
MODEL_4B,
1716
+ MODEL_6_9B,
1710
1717
MODEL_7B,
1711
1718
MODEL_8B,
1712
1719
MODEL_12B,
@@ -1738,6 +1745,7 @@ static const size_t GiB = 1024*MiB;
1738
1745
struct llama_hparams {
1739
1746
bool vocab_only;
1740
1747
bool rope_finetuned;
1748
+ bool use_par_res;
1741
1749
1742
1750
uint32_t n_vocab;
1743
1751
uint32_t n_ctx_train; // context size the model was trained on
@@ -3777,17 +3785,24 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
3777
3785
3778
3786
static const char * llama_model_type_name(e_model type) {
3779
3787
switch (type) {
3788
+ case MODEL_14M: return "14M";
3780
3789
case MODEL_17M: return "17M";
3781
3790
case MODEL_22M: return "22M";
3782
3791
case MODEL_33M: return "33M";
3792
+ case MODEL_70M: return "70M";
3783
3793
case MODEL_109M: return "109M";
3784
3794
case MODEL_137M: return "137M";
3795
+ case MODEL_160M: return "160M";
3785
3796
case MODEL_335M: return "335M";
3797
+ case MODEL_410M: return "410M";
3786
3798
case MODEL_0_5B: return "0.5B";
3787
3799
case MODEL_1B: return "1B";
3800
+ case MODEL_1_4B: return "1.4B";
3788
3801
case MODEL_2B: return "2B";
3802
+ case MODEL_2_8B: return "2.8B";
3789
3803
case MODEL_3B: return "3B";
3790
3804
case MODEL_4B: return "4B";
3805
+ case MODEL_6_9B: return "6.9B";
3791
3806
case MODEL_7B: return "7B";
3792
3807
case MODEL_8B: return "8B";
3793
3808
case MODEL_12B: return "12B";
@@ -4286,6 +4301,52 @@ static void llm_load_hparams(
4286
4301
default: model.type = e_model::MODEL_UNKNOWN;
4287
4302
}
4288
4303
} break;
4304
+ case LLM_ARCH_GPTNEOX:
4305
+ {
4306
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
4307
+ ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
4308
+ switch (hparams.n_layer) {
4309
+ case 6:
4310
+ switch (hparams.n_ff) {
4311
+ case 512: model.type = e_model::MODEL_14M; break;
4312
+ case 2048: model.type = e_model::MODEL_70M; break;
4313
+ default: model.type = e_model::MODEL_UNKNOWN;
4314
+ } break;
4315
+ case 12:
4316
+ switch (hparams.n_ff) {
4317
+ case 3072: model.type = e_model::MODEL_160M; break;
4318
+ default: model.type = e_model::MODEL_UNKNOWN;
4319
+ } break;
4320
+ case 16:
4321
+ switch (hparams.n_ff) {
4322
+ case 8192: model.type = e_model::MODEL_1B; break;
4323
+ default: model.type = e_model::MODEL_UNKNOWN;
4324
+ } break;
4325
+ case 24:
4326
+ switch (hparams.n_ff) {
4327
+ case 4096: model.type = e_model::MODEL_410M; break;
4328
+ case 8192: model.type = e_model::MODEL_1_4B; break;
4329
+ default: model.type = e_model::MODEL_UNKNOWN;
4330
+ } break;
4331
+ case 32:
4332
+ switch (hparams.n_ff) {
4333
+ case 10240: model.type = e_model::MODEL_2_8B; break;
4334
+ case 16384: model.type = e_model::MODEL_6_9B; break;
4335
+ default: model.type = e_model::MODEL_UNKNOWN;
4336
+ } break;
4337
+ case 36:
4338
+ switch (hparams.n_ff) {
4339
+ case 20480: model.type = e_model::MODEL_12B; break;
4340
+ default: model.type = e_model::MODEL_UNKNOWN;
4341
+ } break;
4342
+ case 44:
4343
+ switch (hparams.n_ff) {
4344
+ case 24576: model.type = e_model::MODEL_20B; break;
4345
+ default: model.type = e_model::MODEL_UNKNOWN;
4346
+ } break;
4347
+ default: model.type = e_model::MODEL_UNKNOWN;
4348
+ }
4349
+ } break;
4289
4350
default: (void)0;
4290
4351
}
4291
4352
@@ -6037,6 +6098,41 @@ static bool llm_load_tensors(
6037
6098
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
6038
6099
}
6039
6100
} break;
6101
+ case LLM_ARCH_GPTNEOX:
6102
+ {
6103
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
6104
+ // output
6105
+ {
6106
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
6107
+ model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
6108
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
6109
+ }
6110
+
6111
+ for (int i = 0; i < n_layer; ++i) {
6112
+ ggml_context * ctx_layer = ctx_for_layer(i);
6113
+ ggml_context * ctx_split = ctx_for_layer_split(i);
6114
+
6115
+ auto & layer = model.layers[i];
6116
+
6117
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
6118
+ layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
6119
+
6120
+ layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
6121
+ layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
6122
+
6123
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
6124
+ layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
6125
+
6126
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
6127
+ layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
6128
+
6129
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
6130
+ layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
6131
+
6132
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
6133
+ layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
6134
+ }
6135
+ } break;
6040
6136
default:
6041
6137
throw std::runtime_error("unknown architecture");
6042
6138
}
@@ -10564,6 +10660,140 @@ struct llm_build_context {
10564
10660
10565
10661
return gf;
10566
10662
}
10663
+
10664
+ struct ggml_cgraph * build_gptneox() {
10665
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
10666
+
10667
+ const int64_t n_embd_head = hparams.n_embd_head_v;
10668
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
10669
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
10670
+
10671
+ struct ggml_tensor * cur;
10672
+ struct ggml_tensor * inpL;
10673
+
10674
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
10675
+
10676
+ // inp_pos - contains the positions
10677
+ struct ggml_tensor * inp_pos = build_inp_pos();
10678
+
10679
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
10680
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
10681
+
10682
+ for (int il = 0; il < n_layer; ++il) {
10683
+ cur = llm_build_norm(ctx0, inpL, hparams,
10684
+ model.layers[il].attn_norm,
10685
+ model.layers[il].attn_norm_b,
10686
+ LLM_NORM, cb, il);
10687
+ cb(cur, "attn_norm", il);
10688
+
10689
+ // self-attention
10690
+ {
10691
+ cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
10692
+ cb(cur, "wqkv", il);
10693
+
10694
+ cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
10695
+ cb(cur, "bqkv", il);
10696
+
10697
+ struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
10698
+ struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
10699
+ struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
10700
+
10701
+ cb(Qcur, "Qcur", il);
10702
+ cb(Kcur, "Kcur", il);
10703
+ cb(Vcur, "Vcur", il);
10704
+
10705
+ Qcur = ggml_rope_ext(
10706
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
10707
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
10708
+ ext_factor, attn_factor, beta_fast, beta_slow
10709
+ );
10710
+ cb(Qcur, "Qcur", il);
10711
+
10712
+ Kcur = ggml_rope_ext(
10713
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
10714
+ n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
10715
+ ext_factor, attn_factor, beta_fast, beta_slow
10716
+ );
10717
+ cb(Kcur, "Kcur", il);
10718
+
10719
+ cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
10720
+ model.layers[il].wo, model.layers[il].bo,
10721
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
10722
+ }
10723
+
10724
+ if (il == n_layer - 1) {
10725
+ // skip computing output for unused tokens
10726
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
10727
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
10728
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
10729
+ }
10730
+
10731
+ // ffn
10732
+ if (hparams.use_par_res) {
10733
+ // attention and ffn are computed in parallel
10734
+ // x = x + attn(ln1(x)) + ffn(ln2(x))
10735
+
10736
+ struct ggml_tensor * attn_out = cur;
10737
+
10738
+ cur = llm_build_norm(ctx0, inpL, hparams,
10739
+ model.layers[il].ffn_norm,
10740
+ model.layers[il].ffn_norm_b,
10741
+ LLM_NORM, cb, il);
10742
+ cb(cur, "ffn_norm", il);
10743
+
10744
+ cur = llm_build_ffn(ctx0, cur,
10745
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b,
10746
+ NULL, NULL,
10747
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b,
10748
+ NULL,
10749
+ LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
10750
+ cb(cur, "ffn_out", il);
10751
+
10752
+ cur = ggml_add(ctx0, cur, inpL);
10753
+ cb(cur, "ffn_out", il);
10754
+
10755
+ inpL = ggml_add(ctx0, cur, attn_out);
10756
+ cb(inpL, "l_out", il);
10757
+ } else {
10758
+ // attention and ffn are computed sequentially
10759
+ // x = x + attn(ln1(x))
10760
+ // x = x + ffn(ln2(x))
10761
+
10762
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
10763
+ cb(ffn_inp, "ffn_inp", il);
10764
+
10765
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
10766
+ model.layers[il].ffn_norm,
10767
+ model.layers[il].ffn_norm_b,
10768
+ LLM_NORM, cb, il);
10769
+ cb(cur, "ffn_norm", il);
10770
+
10771
+ cur = llm_build_ffn(ctx0, cur,
10772
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b,
10773
+ NULL, NULL,
10774
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b,
10775
+ NULL,
10776
+ LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
10777
+ cb(cur, "ffn_out", il);
10778
+
10779
+ inpL = ggml_add(ctx0, cur, ffn_inp);
10780
+ cb(inpL, "l_out", il);
10781
+ }
10782
+ }
10783
+
10784
+ cur = llm_build_norm(ctx0, inpL, hparams,
10785
+ model.output_norm,
10786
+ model.output_norm_b,
10787
+ LLM_NORM, cb, -1);
10788
+ cb(cur, "result_norm", -1);
10789
+
10790
+ cur = ggml_mul_mat(ctx0, model.output, cur);
10791
+ cb(cur, "result_output", -1);
10792
+
10793
+ ggml_build_forward_expand(gf, cur);
10794
+
10795
+ return gf;
10796
+ }
10567
10797
};
10568
10798
10569
10799
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
@@ -10774,6 +11004,10 @@ static struct ggml_cgraph * llama_build_graph(
10774
11004
{
10775
11005
result = llm.build_olmo();
10776
11006
} break;
11007
+ case LLM_ARCH_GPTNEOX:
11008
+ {
11009
+ result = llm.build_gptneox();
11010
+ } break;
10777
11011
default:
10778
11012
GGML_ASSERT(false);
10779
11013
}
@@ -15766,7 +16000,6 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
15766
16000
// these models do not use RoPE
15767
16001
case LLM_ARCH_GPT2:
15768
16002
case LLM_ARCH_GPTJ:
15769
- case LLM_ARCH_GPTNEOX:
15770
16003
case LLM_ARCH_MPT:
15771
16004
case LLM_ARCH_REFACT:
15772
16005
case LLM_ARCH_BLOOM:
@@ -15802,6 +16035,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
15802
16035
case LLM_ARCH_PHI3:
15803
16036
case LLM_ARCH_GEMMA:
15804
16037
case LLM_ARCH_STARCODER2:
16038
+ case LLM_ARCH_GPTNEOX:
15805
16039
return LLAMA_ROPE_TYPE_NEOX;
15806
16040
15807
16041
// all model arches should be listed explicitly here
0 commit comments