Automatic Warp Specialization Optimization (#5622) #5627
Merged
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Warp specialization enhances kernel performance by utilizing an asynchronous execution model, where different parts of the kernel are handled by separate hardware units. The data communication between these units, via shared memory on the H100, operates with high efficiency. With this in mind, we’ve developed an automatic warp specialization optimization that partitions a user kernel into asynchronous tasks (which map to warp groups on NVIDIA GPU), which naturally execute concurrently, leveraging the hardware’s multitasking warp scheduler.
To enable warp specialization, user just needs to specify certain autotune flags, i.e.,
num_consumer_groups
andnum_buffers_warp_spec
. For example, a warp-specialized GEMM implementation might look like below. You can find a complete example in 09-persistent-matmul.py.New contributor declaration
I am not making a trivial change, such as fixing a typo in a comment.
I have written a PR description following these
rules.
I have run
pre-commit run --from-ref origin/main --to-ref HEAD
.Select one of the following.
/test
forlit
tests/unittest
for C++ tests/python/test
for end-to-end testsFILL THIS IN
.Select one of the following.
lit
tests.lit
tests I have added follow these best practices,including the "tests should be minimal" section. (Usually running Python code
and using the instructions it generates is not minimal.)