
Health Check Support in Nerdctl – Proposal
Problem Statement

Health checks are a critical mechanism for monitoring the health of containerized applications. They go beyond checking if a
container process is running by validating that the application itself is functioning correctly—whether it's responding to HTTP
requests, processing jobs, or performing other expected tasks. This proactive monitoring helps detect failures early and
enables automated actions like restarting unhealthy containers or alerting operators, ultimately improving system resilience
and reliability. Currently, finch/nerdctl doesn’t support configuring health checks via dockerfile, compose or cli.
(Open ﻿discussion﻿ requesting health check feature). To address this, we need to implement health checks with the following
requirements:

●

●

Users should be able to configure and modify container health checks using the CLI, Dockerfile, and Compose, with full
support for all configuration options available in Docker.

Users should be able to view health status and health check logs of a running container by listing or inspecting
container.

Proposed Solution

NERDCTL + SYSTEMD TIMERS (RECOMMENDED)

This approach is similar to ﻿Podman’s﻿ model, using systemd timers and services to execute health checks periodically,
independent of the daemon. We’ll introduce a new healthcheck command in nerdctl. This command would take a container
ID/Name as input, load the corresponding container, and check whether the container’s labels/config include health check
settings. If a health check is configured, the healthcheck command would execute the test command inside the container
using container exec, applying the configured timeout. Additionally, users can manually run this command to perform a
one-time health check and verify if the application inside the container is running.

nerdctl healthcheck run <containerID or name>

Scheduling health checks using systemd

A ﻿systemd timer﻿ is a unit that schedules the execution of a service unit, similar to a cron job but fully managed by systemd. To
continuously run health checks in nerdctl, we leverage systemd timers. For each running container with health checks
configured, we create transient systemd .timer and .service units, typically named using the container's ID. The .timer
defines when to run the health check (intervals) and the linked .service defines what to run — in this case, the nerdctl
healthcheck command for the specific container. We'll need to make changes in nerdctl to handle container life cycle
events as follows:

●

●

●

●

●

Container Create → No action

Container Start → Create transient systemd timer & service for health checks.

Container Pause → Systemd timer remains, but health checks stop temporarily.

Container Restart → Delete & recreate the systemd timer & service.

Container Stop/Remove → Delete the systemd timer & service associated with the container.

https://github.com/containerd/nerdctl/discussions/3149
https://www.redhat.com/en/blog/podman-edge-healthcheck
https://wiki.archlinux.org/title/Systemd/Timers


Tracking Health Check Configuration and Results

We use container labels to store the health check configuration, such as the command to run, interval, timeout, retries,
and start period. Labels integrate seamlessly with the container lifecycle, ensuring that health data is removed when a
container is deleted. They provide a persistent and lightweight way to associate configuration data with containers, and can be
easily accessed and updated using containerd APIs.
For tracking health status/logs, we follow an approach similar to Podman by creating a <cid>-healthcheck.log JSON
file stored alongside the container’s runtime directory. After each health check execution, we read the existing
healthcheck.log(create if it doesn’t already exist) and update the health status and failure streak, and write the updated
state back to disk. Since the log is stored on disk, we’re not limited by label size constraints and can retain a larger history—
though we default to storing the last 5 entries. When a container restarts, the health check state resets and starts fresh.
Because systemd is independent of the daemon, timers remain unaffected by client/daemon restarts. The on-disk log ensures
health status continuity across restarts and is cleaned up automatically when the container is removed or during a system-
wide prune.

This design allows nerdctl to track and report health status over time without needing an always-running daemon, with
systemd managing the scheduling and local JSON log files maintaining the health history tied to each container's state. 
Systemd is not available in all environments, such as minimal Linux distributions (e.g., Alpine) and Windows, requiring
alternative scheduling methods. In these cases, health checks will not run automatically unless explicitly configured. To enable



automation, users can utilize cron jobs on Linux or Task Scheduler on Windows (Although WSL 2 now ﻿supports systemd﻿) to
periodically invoke nerdctl healthcheck command.

Currently, nerdctl does not implement the logic required to parse and persist health check configurations defined in
Dockerfiles, Compose files, or CLI flags. In Docker, health check instructions from the Dockerfile are stored as part of the
image manifest, and Compose overrides are applied at container runtime. To support similar functionality, we will need to
extend nerdctl to parse health check configuration from all supported sources and ensure it is either stored in the image
metadata during build or applied at runtime when using Compose or CLI. In cases where multiple sources provide health
check configuration, we should adopt Docker’s behavior by prioritizing Compose-defined settings over those in the Dockerfile.
The exact mechanics of parsing, merging, and persisting health config in nerdctl will require further exploration as part of the
implementation.

Pros:

●

●

●

●

Implementing health checks in nerdctl allows us to extend this feature to both finch and finch-daemon. 

Systemd handles scheduling without requiring a persistent daemon, reducing memory and CPU overhead when no
containers require health checks.

Logs are persisted across daemon restarts, ensuring continuity of health monitoring.

Podman has proven this approach to work.

Cons:

● Relies on systemd, limiting portability to non-systemd environments

HEALTH CHECK PLUGIN IN CONTAINERD (ALTERNATIVE)

Containerd's modular ﻿plugin﻿ architecture allows it to be extended and customized without modifying its core code. Many of its
core functionalities, such as snapshotting and content storage, are implemented as plugins, making it highly extensible. At
startup, containerd loads built-in plugins and can also integrate external extensions through proxy processes or shared
libraries. While containerd includes plugins for monitoring resource usage and publishing state changes, it does not have a
built-in mechanism for performing application-level health checks.

Hence, a custom plugin for container health checks needs to be developed, adhering to ContainerD’s existing plugin
interfaces. Ideally, this would be an internal plugin registered under a new health type, or possibly integrated under the
existing monitor type. External plugins currently support only specific ﻿service types﻿ (like snapshotter, content store etc)
making them unsuitable for implementing generalized health check logic. The health check plugin will periodically run user-
defined commands inside running containers by leveraging containerd’s ﻿Task﻿ API, which allows executing additional processes
(exec) in the container context. This enables direct, low-level execution of health check probes, such as curl or script-based
checks, without modifying the main container process. Health check results can be stored within container metadata in labels,
to ensure easy accessibility.

However, embedding application-level health checks directly within ContainerD might not be ideal. ContainerD’s primary
responsibility is managing container lifecycles and providing low-level telemetry. Implementing detailed, application-specific
health checks within ContainerD could complicate its core responsibilities and might duplicate capabilities better handled by
higher-level systems.

Pros:

●

●

Leverages containerd's plugin system.

Potential reuse across other containerd-based projects.

https://learn.microsoft.com/en-us/windows/wsl/systemd
https://github.com/containerd/containerd/blob/main/docs/PLUGINS.md
https://github.com/containerd/containerd/blob/main/docs/PLUGINS.md#configuration
https://github.com/containerd/containerd/blob/main/api/services/tasks/v1/tasks.pb.go


Cons:

●

●

●

Requires additional deployment and maintenance of the plugin.

Requires buy-in from containerd maintainers to upstream these changes, which may add delays to adoption.

containerd will need to be aware of docker specific image schema to support image health configs.


