Skip to content

Weekly issue metrics report - 2025-04-01..2025-04-07 #34

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
github-actions bot opened this issue May 5, 2025 · 0 comments
Open

Weekly issue metrics report - 2025-04-01..2025-04-07 #34

github-actions bot opened this issue May 5, 2025 · 0 comments
Assignees

Comments

@github-actions
Copy link

github-actions bot commented May 5, 2025

Issue Metrics

Metric Average Median 90th percentile
Time to first response 1 day, 6:30:46 5:05:25 3 days, 0:26:40
Time to close 9 days, 20:24:54 7 days, 3:53:56 20 days, 13:46:50
Time to answer None None None
Time spent in module: android 20 days, 13:39:41 20 days, 23:57:08 28 days, 12:10:49
Time spent in module: ios None None None
Time spent in module: benchmark None None None
Time spent in module: build/install 33 days, 17:46:09 33 days, 17:46:09 33 days, 17:46:09
Time spent in module: vulkan None None None
Time spent in module: llm None None None
Time spent in module: ci 4 days, 0:00:09 4 days, 0:00:09 4 days, 0:00:09
Time spent in module: training None None None
Time spent in module: user experience None None None
Metric Count
Number of items that remain open 19
Number of items closed 6
Number of most active mentors 0
Total number of items created 25
Title URL Author Time to first response Time to close Time to answer Time spent in module: android Time spent in module: ios Time spent in module: benchmark Time spent in module: build/install Time spent in module: vulkan Time spent in module: llm Time spent in module: ci Time spent in module: training Time spent in module: user experience
Check tensor's dim order ambiguity in IR verifier pytorch/executorch#9942 Gasoonjia 0:03:23 None None None None None None None None None None None
torchao not installed by default for ExecuTorch 0.6 RC pytorch/executorch#9940 mergennachin None 1 day, 0:16:47 None None None None None None None None None None
The contiguity of input tensors is lost when copied for the Method::execute in executorch runtime pytorch/executorch#9930 JoshuaGhost 5:44:50 None None None None None None None None None None None
Spelling problem in doc backends-xnnpack.md pytorch/executorch#9924 zxc503 1 day, 5:50:29 2 days, 14:51:04 None None None None None None None None None None
[Android] Better logging on error pytorch/executorch#9921 kirklandsign None None None 30 days, 9:14:14.566945 None None None None None None None None
Update buck version when there's an April 4 or newer release & clean up after pytorch#9890 pytorch/executorch#9919 swolchok None None None None None None None None None None None None
Improve contributor documentation for Android pytorch/executorch#9913 GregoryComer 4:19:39 10 days, 7:47:40 None 10 days, 7:47:40 None None None None None None None None
Support BFloat16 dtype in Android Tensor API pytorch/executorch#9881 GregoryComer 4:26:00 20 days, 23:57:08 None 20 days, 23:57:08 None None None None None None None None
UNSTABLE trunk / test-qnn-model (fp32) pytorch/executorch#9878 kirklandsign 1 day, 3:33:41 4 days, 0:00:12 None None None None None None None 4 days, 0:00:09 None None
[ExecuTorch] recognizes and warns user when Q/DQ ops are not lowered pytorch/executorch#9858 metascroy None None None None None None None None None None None None
[torchao] Enable new quant primitives in PT2E pytorch/executorch#9857 metascroy None None None None None None None None None None None None
[torchao] Migrate exact copy of PT2E from torch.ao to torchao pytorch/executorch#9856 metascroy None None None None None None None None None None None None
[XNNPACK] partitioner recognizes new torchao quant primitives pytorch/executorch#9855 metascroy None None None None None None None None None None None None
[QNN] partitioner recognizes new torchao quant primitives pytorch/executorch#9854 metascroy None None None None None None None None None None None None
[CoreML] partitioner recognizes new torchao quant primitives pytorch/executorch#9853 metascroy None None None None None None None None None None None None
Make ExecuTorch Q/DQ representation default and resilient pytorch/executorch#9852 metascroy None None None None None None None None None None None None
Use eager mode quantize_ with QDQLayout for non-delegated quantized ops in ExecuTorch pytorch/executorch#9851 metascroy None None None None None None None None None None None None
Migrate PT2E to torchao using the new quant primitives pytorch/executorch#9850 metascroy None None None None None None None None None None None None
Standardize ExecuTorch backends on new torchao primitives pytorch/executorch#9849 metascroy None None None None None None None None None None None None
[torchao] support codebook/LUT in torchao pytorch/executorch#9848 metascroy None None None None None None None None None None None None
[CoreML] quantizer supports 4-bit affine (groupwise and channelwise) pytorch/executorch#9847 metascroy None None None None None None None None None None None None
[XNNPACK] support 8d4w in PT2E flow pytorch/executorch#9846 metascroy None None None None None None None None None None None None
[0.6 Release] Quality testing pytorch/executorch#9837 metascroy 7 days, 3:51:05 20 days, 3:36:33 None None None None None None None None None None
Upgrade QNN support to latest version pytorch/executorch#9806 RemonComputer None None None None None None None None None None None None
Support CoreML export on Linux pytorch/executorch#9800 jathu 0:17:03 None None None None None 33 days, 17:46:09.120477 None None None None None

This report was generated with the Issue Metrics Action
Search query used to find these items: repo:pytorch/executorch is:issue created:2025-04-01..2025-04-07

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant