-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathConsecutiveFib.java
48 lines (44 loc) · 1.29 KB
/
ConsecutiveFib.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
package main.java.kyu6;
/**
* 6 kyu - Product of consecutive Fib numbers
*
* https://www.codewars.com/kata/5541f58a944b85ce6d00006a
*
* Details:
*
* The Fibonacci numbers are the numbers in the following integer sequence (Fn):
* 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
*
* such as
* F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
*
* Given a number, say prod (for product), we search two Fibonacci numbers F(n) and F(n+1)
* verifying
* F(n) * F(n+1) = prod.
*
* Your function productFib takes an integer (prod) and returns an array:
* [F(n), F(n+1), true] or {F(n), F(n+1), 1} or (F(n), F(n+1), True)
*
* depending on the language if
* F(n) * F(n+1) = prod.
*
* If you don't find two consecutive F(m) verifying F(m) * F(m+1) = prod you will return
* [F(m), F(m+1), false] or {F(n), F(n+1), 0} or (F(n), F(n+1), False)
*
* F(m) being the smallest one such as F(m) * F(m+1) > prod.
*/
public class ConsecutiveFib {
public static long[] productFib(long prod) {
long a = 0;
long b = 1;
while (a * b <= prod) {
if ((a * b) == prod) {
return new long[]{a, b, 1};
}
final long buff = a;
a = b;
b += buff;
}
return new long[]{a, b, 0};
}
}