This repository provides the official implementation of the methods presented in our paper, Reliable and Interpretable Visual Field Progression Prediction with Diffusion Models and Conformal Risk Control, which has been accepted for publication at MICCAI 2025.

-
Install the required dependencies:
cd puq pip install -e .
To run the experiments, download the required datasets from the links below:
unzip them in the 'puq/data' folder.
To run the script with default settings:
python run.py --no-cache --archetypes --alpha 0.25
python run.py --no-cache --archetypes --data data/UW_subgroups/mild --alpha 0.25 --q 0.95 --beta 0.1
python run.py --no-cache --archetypes --data data/UW_subgroups/moderate --alpha 0.25 --q 0.9 --beta 0.14
python run.py --no-cache --archetypes --dataset data/UW_subgroups/severe --alpha 0.25 --q 0.9 --beta 0.155
python run.py --no-cache --archetypes --data data/Scheie_subgroups/mild --alpha 0.25 --q 0.95 --beta 0.1
python run.py --no-cache --archetypes --data data/Scheie_subgroups/moderate --alpha 0.25 --q 0.9 --beta 0.15
python run.py --no-cache --archetypes --data data/Scheie_subgroups/severe --alpha 0.25 --q 0.9 --beta 0.2
--no-cache
: Ensures the script runs fresh without using cached results.--archetypes
: Enables the archetypal analysis module.--dataset
: Specifies the dataset (UW
orGRN
).--q
and--beta
: Control the model's sensitivity and regularization.