Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 6 additions & 5 deletions implicit/evaluation.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -187,16 +187,17 @@ cpdef leave_k_out_split(

# get only users with n + 1 interactions
candidate_mask = counts > K + 1
if sum(candidate_mask) == 0:
return ratings.tocsr(), csr_matrix(ratings.shape)
unique_candidate_users = unique_users[candidate_mask]

# keep a given subset of users _only_ in the training set.
if train_only_size > 0.0:
train_only_mask = ~np.isin(
unique_users, _choose(random_state, len(unique_users), train_only_size)
)
candidate_mask = train_only_mask & candidate_mask
adjusted_ratio = min(1, (1 - train_only_size) / (unique_candidate_users.shape[0] / (unique_users.shape[0] + 1)))
train_only_mask = _choose(random_state, len(unique_candidate_users), adjusted_ratio)
unique_candidate_users = unique_candidate_users[train_only_mask]

# get unique users who appear in the test set
unique_candidate_users = unique_users[candidate_mask]
full_candidate_mask = np.isin(users, unique_candidate_users)

# get all users, items and ratings that match specified requirements to be
Expand Down