Skip to content

Make Ray engine and worker process prefill returning first token #147

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Jul 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions jetstream_pt/ray_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,7 @@ def prefill(
existing_prefix: Optional[Prefix] = None,
padded_tokens: np.ndarray, # PrefillInputs[np.ndarray],
true_length: int,
) -> Prefix:
) -> Tuple[Prefix, engine_api.ResultTokens]:
if self.is_disaggregated:
return self.prefill_impl(
params=params,
Expand All @@ -95,7 +95,7 @@ def prefill_impl(
existing_prefix: Optional[Prefix] = None,
padded_tokens: np.ndarray, # PrefillInputs[np.ndarray],
true_length: int,
) -> Prefix:
) -> Tuple[Prefix, engine_api.ResultTokens]:
all_outputs = []
for worker in self.engine_workers:
prefill_func = (
Expand Down
44 changes: 40 additions & 4 deletions jetstream_pt/ray_worker.py
Original file line number Diff line number Diff line change
Expand Up @@ -461,7 +461,7 @@ def prefill_ray(
existing_prefix: Optional[Prefix] = None,
padded_tokens: PrefillInputs, # PrefillInputs[np.ndarray],
true_length: int,
) -> None:
) -> tuple[Prefix, engine_api.ResultTokens]:
"""Do prefill in ray worker"""
logits, updated_caches = self.prefill(
params=params,
Expand All @@ -476,7 +476,25 @@ def prefill_ray(
prefix = Prefix(token, updated_caches, true_length)
self.prefix_queue.put(prefix, block=False)

return token
token_out = jnp.reshape(token, (1, 1))
data = jnp.concatenate(
[
token_out, # First token
jnp.ones_like(token_out), # validity of first token
jnp.zeros((1, 1), dtype=jnp.int32), # length = 0
],
axis=-1,
)
length = token_out.shape[1]
result = engine_api.ResultTokens(
data=data,
tokens_idx=(0, length),
valid_idx=(length, 2 * length),
length_idx=(2 * length, 2 * length + 1),
samples_per_slot=1,
)

return prefix, result

def _convert_to_np_caches(
self, caches: List[Tuple[jax.Array, jax.Array]]
Expand All @@ -495,7 +513,7 @@ def prefill_ray_disaggregation(
existing_prefix: Optional[Prefix] = None,
padded_tokens: PrefillInputs, # PrefillInputs[np.ndarray],
true_length: int,
) -> Any:
) -> tuple[NpPrefix, engine_api.ResultTokens]:
"""Do prefill in ray worker"""
logits, updated_caches = self.prefill(
params=params,
Expand All @@ -513,7 +531,25 @@ def prefill_ray_disaggregation(
np_update_caches = self._convert_to_np_caches(updated_caches)
np_prefix = NpPrefix(token, np_update_caches, true_length)

return np_prefix
token_out = jnp.reshape(token, (1, 1))
data = jnp.concatenate(
[
token_out, # First token
jnp.ones_like(token_out), # validity of first token
jnp.zeros((1, 1), dtype=jnp.int32), # length = 0
],
axis=-1,
)
length = token_out.shape[1]
result = engine_api.ResultTokens(
data=data,
tokens_idx=(0, length),
valid_idx=(length, 2 * length),
length_idx=(2 * length, 2 * length + 1),
samples_per_slot=1,
)

return np_prefix, result

def transfer(self, np_prefix: NpPrefix) -> Any:
"""Transfer prefill result from object store to HBM"""
Expand Down
Loading