Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions extensions-builtin/Lora/lora.py
Original file line number Diff line number Diff line change
Expand Up @@ -178,6 +178,7 @@ def load_loras(names, multipliers=None):


def lora_forward(module, input, res):
input = devices.cond_cast_unet(input)
if len(loaded_loras) == 0:
return res

Expand Down
4 changes: 2 additions & 2 deletions modules/sd_hijack_optimizations.py
Original file line number Diff line number Diff line change
Expand Up @@ -337,7 +337,7 @@ def xformers_attention_forward(self, x, context=None, mask=None):

dtype = q.dtype
if shared.opts.upcast_attn:
q, k = q.float(), k.float()
q, k, v = q.float(), k.float(), v.float()

out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=get_xformers_flash_attention_op(q, k, v))

Expand Down Expand Up @@ -372,7 +372,7 @@ def scaled_dot_product_attention_forward(self, x, context=None, mask=None):

dtype = q.dtype
if shared.opts.upcast_attn:
q, k = q.float(), k.float()
q, k, v = q.float(), k.float(), v.float()

# the output of sdp = (batch, num_heads, seq_len, head_dim)
hidden_states = torch.nn.functional.scaled_dot_product_attention(
Expand Down
2 changes: 1 addition & 1 deletion modules/sd_hijack_unet.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@ def hijack_ddpm_edit():
unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
if version.parse(torch.__version__) <= version.parse("1.13.1"):
if version.parse(torch.__version__) <= version.parse("1.13.2") or torch.cuda.is_available():
CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast)
CondFunc('ldm.modules.attention.GEGLU.forward', lambda orig_func, self, x: orig_func(self.float(), x.float()).to(devices.dtype_unet), unet_needs_upcast)
CondFunc('open_clip.transformer.ResidualAttentionBlock.__init__', lambda orig_func, *args, **kwargs: kwargs.update({'act_layer': GELUHijack}) and False or orig_func(*args, **kwargs), lambda _, *args, **kwargs: kwargs.get('act_layer') is None or kwargs['act_layer'] == torch.nn.GELU)
Expand Down