Skip to content

feat: add standard histogram plot #85

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 16 commits into from
Oct 3, 2024
Merged

Conversation

Mrglglglglgl
Copy link
Collaborator

@Mrglglglglgl Mrglglglglgl commented Sep 27, 2024

PR Type

Enhancement, Tests, Documentation


Description

  • Introduced a new module for creating histograms from pandas DataFrames or Series, supporting single or multiple histograms with optional grouping by a categorical column.
  • Enhanced graph styling by moving grid lines behind the plot and improving legend handling.
  • Added comprehensive tests for the histogram plot functionality, including range clipping and filling.
  • Documented the histogram plot usage and features, providing example usage and API documentation.
  • Updated documentation navigation to include the new histogram plot section.

Changes walkthrough 📝

Relevant files
Enhancement
histogram.py
Add histogram plotting functionality with customization options

pyretailscience/plots/histogram.py

  • Added a new module for creating histograms from pandas DataFrames or
    Series.
  • Supports single or multiple histograms, with optional grouping by a
    categorical column.
  • Includes range clipping and filling, and comprehensive customization
    options.
  • Assumes pre-aggregated data for plotting.
  • +266/-0 
    graph_utils.py
    Enhance graph styling for better visualization                     

    pyretailscience/style/graph_utils.py

  • Moved grid lines behind the plot for better visualization.
  • Improved legend handling for clarity.
  • +7/-5     
    Tests
    test_histogram.py
    Add tests for histogram plot functionality                             

    tests/plots/test_histogram.py

  • Added tests for the new histogram plot function.
  • Included tests for range clipping and filling.
  • Utilized fixtures for mocking and sample data.
  • +267/-0 
    Documentation
    analysis_modules.md
    Document histogram plot usage and features                             

    docs/analysis_modules.md

  • Documented the new histogram plot functionality.
  • Provided example usage and explanation of features.
  • +46/-0   
    histogram.md
    Add API documentation for histogram plot                                 

    docs/api/plots/histogram.md

    • Added API documentation for the histogram plot module.
    +3/-0     
    mkdocs.yml
    Update documentation navigation for histogram plot             

    mkdocs.yml

  • Updated navigation to include the new histogram plot documentation.
  • +2/-0     

    💡 PR-Agent usage: Comment /help "your question" on any pull request to receive relevant information

    Summary by CodeRabbit

    • New Features

      • Introduced a "Histogram Plot" section in the documentation, detailing its utility for visualizing data distributions.
      • Implemented a new module for creating histograms, offering customizable visualizations from data.
      • Expanded the "Product Association Rules" section in the documentation to enhance understanding of its applications in retail analytics.
    • Documentation

      • Added example code snippets for histogram creation in the documentation.
      • Enhanced documentation for histogram plotting functionalities, including detailed explanations and practical examples.
    • Tests

      • Added a comprehensive suite of unit tests for histogram plotting functionality to ensure robustness.

    @Mrglglglglgl Mrglglglglgl linked an issue Sep 27, 2024 that may be closed by this pull request
    4 tasks
    Copy link

    coderabbitai bot commented Sep 27, 2024

    Important

    Review skipped

    Review was skipped due to path filters

    ⛔ Files ignored due to path filters (2)
    • docs/assets/images/analysis_modules/plots/histogram_plot.svg is excluded by !**/*.svg
    • docs/assets/images/analysis_modules/plots/line_plot.svg is excluded by !**/*.svg

    CodeRabbit blocks several paths by default. You can override this behavior by explicitly including those paths in the path filters. For example, including **/dist/** will override the default block on the dist directory, by removing the pattern from both the lists.

    You can disable this status message by setting the reviews.review_status to false in the CodeRabbit configuration file.

    Walkthrough

    The pull request introduces a "Histogram Plot" feature in the pyretailscience library, enhancing both documentation and functionality for histogram visualization. It adds a dedicated module for histogram plotting, updates the documentation to include usage examples, and introduces unit tests to ensure robustness. Changes span multiple files, including documentation updates, new functions for histogram creation and customization, and improvements to existing plotting utilities.

    Changes

    Files Change Summary
    docs/analysis_modules.md New section on "Histogram Plot" added, including an overview, analysis types, and example usage.
    pyretailscience/plots/histogram.py New module for histogram plotting with functions for creating and customizing histograms.
    tests/plots/test_histogram.py New unit tests for histogram plotting functionality, covering various scenarios and edge cases.

    Possibly related PRs

    Suggested reviewers

    • murray-ds

    Poem

    🐰 In the garden of data, we hop with delight,
    New histograms bloom, a colorful sight.
    With axes so clear and legends that sing,
    Our plots tell a tale of each little thing.
    So gather your data, let’s plot and explore,
    With rabbits and histograms, who could ask for more? 🥕


    Thank you for using CodeRabbit. We offer it for free to the OSS community and would appreciate your support in helping us grow. If you find it useful, would you consider giving us a shout-out on your favorite social media?

    ❤️ Share
    🪧 Tips

    Chat

    There are 3 ways to chat with CodeRabbit:

    • Review comments: Directly reply to a review comment made by CodeRabbit. Example:
      • I pushed a fix in commit <commit_id>, please review it.
      • Generate unit testing code for this file.
      • Open a follow-up GitHub issue for this discussion.
    • Files and specific lines of code (under the "Files changed" tab): Tag @coderabbitai in a new review comment at the desired location with your query. Examples:
      • @coderabbitai generate unit testing code for this file.
      • @coderabbitai modularize this function.
    • PR comments: Tag @coderabbitai in a new PR comment to ask questions about the PR branch. For the best results, please provide a very specific query, as very limited context is provided in this mode. Examples:
      • @coderabbitai gather interesting stats about this repository and render them as a table. Additionally, render a pie chart showing the language distribution in the codebase.
      • @coderabbitai read src/utils.ts and generate unit testing code.
      • @coderabbitai read the files in the src/scheduler package and generate a class diagram using mermaid and a README in the markdown format.
      • @coderabbitai help me debug CodeRabbit configuration file.

    Note: Be mindful of the bot's finite context window. It's strongly recommended to break down tasks such as reading entire modules into smaller chunks. For a focused discussion, use review comments to chat about specific files and their changes, instead of using the PR comments.

    CodeRabbit Commands (Invoked using PR comments)

    • @coderabbitai pause to pause the reviews on a PR.
    • @coderabbitai resume to resume the paused reviews.
    • @coderabbitai review to trigger an incremental review. This is useful when automatic reviews are disabled for the repository.
    • @coderabbitai full review to do a full review from scratch and review all the files again.
    • @coderabbitai summary to regenerate the summary of the PR.
    • @coderabbitai resolve resolve all the CodeRabbit review comments.
    • @coderabbitai configuration to show the current CodeRabbit configuration for the repository.
    • @coderabbitai help to get help.

    Other keywords and placeholders

    • Add @coderabbitai ignore anywhere in the PR description to prevent this PR from being reviewed.
    • Add @coderabbitai summary to generate the high-level summary at a specific location in the PR description.
    • Add @coderabbitai anywhere in the PR title to generate the title automatically.

    CodeRabbit Configuration File (.coderabbit.yaml)

    • You can programmatically configure CodeRabbit by adding a .coderabbit.yaml file to the root of your repository.
    • Please see the configuration documentation for more information.
    • If your editor has YAML language server enabled, you can add the path at the top of this file to enable auto-completion and validation: # yaml-language-server: $schema=https://coderabbit.ai/integrations/schema.v2.json

    Documentation and Community

    • Visit our Documentation for detailed information on how to use CodeRabbit.
    • Join our Discord Community to get help, request features, and share feedback.
    • Follow us on X/Twitter for updates and announcements.

    @qodo-merge-pro qodo-merge-pro bot added documentation Improvements or additions to documentation enhancement New feature or request Tests Review effort [1-5]: 4 labels Sep 27, 2024
    Copy link
    Contributor

    PR-Agent was enabled for this repository. To continue using it, please link your git user with your CodiumAI identity here.

    PR Reviewer Guide 🔍

    ⏱️ Estimated effort to review: 4 🔵🔵🔵🔵⚪
    🧪 PR contains tests
    🔒 No security concerns identified
    ⚡ Key issues to review

    Performance Concern
    The apply_range_clipping function may be inefficient for large datasets as it creates a new DataFrame for each column. Consider using in-place operations or vectorized methods for better performance.

    Error Handling
    The function doesn't handle the case where value_col is an empty list. This could lead to unexpected behavior or errors.

    Test Coverage
    The tests don't cover all edge cases, such as empty DataFrames or Series, or invalid input types for value_col and group_col.

    Copy link
    Contributor

    qodo-merge-pro bot commented Sep 27, 2024

    PR-Agent was enabled for this repository. To continue using it, please link your git user with your CodiumAI identity here.

    PR Code Suggestions ✨

    Explore these optional code suggestions:

    CategorySuggestion                                                                                                                                    Score
    Enhancement
    Add option to normalize histogram for better distribution comparison

    Consider adding an option to normalize the histogram. This can be useful when
    comparing distributions with different sample sizes. You can implement this by
    adding a normalize parameter and using density=True in the histogram plot if
    normalization is requested.

    pyretailscience/plots/histogram.py [54-69]

     def plot(
         df: pd.DataFrame | pd.Series,
         value_col: str | list[str] | None = None,
         group_col: str | None = None,
         title: str | None = None,
         x_label: str | None = None,
         y_label: str | None = None,
         legend_title: str | None = None,
         ax: Axes | None = None,
         source_text: str | None = None,
         move_legend_outside: bool = False,
         range_lower: float | None = None,
         range_upper: float | None = None,
         range_method: Literal["clip", "fillna"] = "clip",
    +    normalize: bool = False,
         **kwargs: dict[str, any],
     ) -> SubplotBase:
    +    # ... (existing code)
     
    +    kwargs['density'] = normalize
    +    ax = _plot_histogram(
    +        df=df, value_col=value_col, group_col=group_col, ax=ax, cmap=cmap, num_histograms=num_histograms, **kwargs
    +    )
    +
    +    # ... (rest of the existing code)
    +
    • Apply this suggestion
    Suggestion importance[1-10]: 9

    Why: Normalizing histograms is a valuable feature when comparing distributions with different sample sizes. This suggestion significantly enhances the functionality by providing an option to normalize the data, making comparisons more meaningful.

    9
    Simplify range clipping logic by using infinity values instead of None

    Consider using np.inf instead of None for range_upper and -np.inf for range_lower in
    the apply_range_clipping function. This would simplify the logic and make it more
    consistent, as you wouldn't need to check for None values separately.

    pyretailscience/plots/histogram.py [176-204]

    -if range_lower is not None or range_upper is not None:
    -    if range_method == "clip":
    -        return df.assign(**{col: df[col].clip(lower=range_lower, upper=range_upper) for col in value_col})
    -    return df.assign(
    -        **{
    -            col: df[col].apply(
    -                lambda x: np.nan
    -                if (range_lower is not None and x < range_lower) or (range_upper is not None and x > range_upper)
    -                else x
    -            )
    -            for col in value_col
    -        }
    -    )
    +range_lower = -np.inf if range_lower is None else range_lower
    +range_upper = np.inf if range_upper is None else range_upper
    +if range_method == "clip":
    +    return df.assign(**{col: df[col].clip(lower=range_lower, upper=range_upper) for col in value_col})
    +return df.assign(
    +    **{
    +        col: df[col].apply(
    +            lambda x: np.nan if x < range_lower or x > range_upper else x
    +        )
    +        for col in value_col
    +    }
    +)
    • Apply this suggestion
    Suggestion importance[1-10]: 8

    Why: This suggestion simplifies the logic by using np.inf and -np.inf instead of checking for None, making the code cleaner and potentially reducing errors related to boundary conditions.

    8
    Implement data binning for more flexible and meaningful histogram creation

    Consider using pandas.cut() function to bin the data before plotting. This can be
    useful for creating more meaningful histograms, especially when dealing with
    continuous data or when you want to control the number of bins.

    pyretailscience/plots/histogram.py [228-266]

     def _plot_histogram(
         df: pd.DataFrame,
         value_col: list[str],
         group_col: str | None,
         ax: Axes | None,
         cmap: ListedColormap,
         num_histograms: int,
    +    bins: int | list = 10,
         **kwargs: dict,
     ) -> Axes:
         add_legend = num_histograms > 1
     
         if group_col is None:
    -        return df[value_col].plot(kind="hist", ax=ax, alpha=0.5, legend=add_legend, color=cmap.colors[0], **kwargs)
    +        for col in value_col:
    +            df[f'{col}_binned'] = pd.cut(df[col], bins=bins)
    +        return df[[f'{col}_binned' for col in value_col]].plot(kind="hist", ax=ax, alpha=0.5, legend=add_legend, color=cmap.colors[0], **kwargs)
     
         df_pivot = df.pivot(columns=group_col, values=value_col[0])
    +    for col in df_pivot.columns:
    +        df_pivot[f'{col}_binned'] = pd.cut(df_pivot[col], bins=bins)
     
         # Plot all columns at once
    -    return df_pivot.plot(
    +    return df_pivot[[f'{col}_binned' for col in df_pivot.columns]].plot(
             kind="hist",
             ax=ax,
             alpha=0.5,
             legend=add_legend,
             color=cmap.colors[: len(df_pivot.columns)],  # Use the appropriate number of colors
             **kwargs,
         )
    • Apply this suggestion
    Suggestion importance[1-10]: 7

    Why: Using pandas.cut() for binning can enhance the flexibility and interpretability of histograms, especially for continuous data. This suggestion adds value by allowing more control over the histogram bins.

    7

    💡 Need additional feedback ? start a PR chat

    Copy link
    Contributor

    PR-Agent was enabled for this repository. To continue using it, please link your git user with your CodiumAI identity here.

    CI Failure Feedback 🧐

    Action: Pre-Commit

    Failed stage: Run Pre-commit [❌]

    Failed test name: ruff

    Failure summary:

    The action failed because the ruff hook detected and fixed 21 errors related to missing trailing
    commas (COM812) in the following files:

  • pyretailscience/plots/histogram.py: 5 errors
  • tests/plots/test_histogram.py: 16 errors
    The ruff-format also failed as it reformatted 2 files. The
    process completed with exit code 1 due to these modifications.

  • Relevant error logs:
    1:  ##[group]Operating System
    2:  Ubuntu
    ...
    
    465:  [INFO] Once installed this environment will be reused.
    466:  [INFO] This may take a few minutes...
    467:  [INFO] Installing environment for https://github.com/pre-commit/pre-commit-hooks.
    468:  [INFO] Once installed this environment will be reused.
    469:  [INFO] This may take a few minutes...
    470:  [INFO] Installing environment for https://github.com/kynan/nbstripout.
    471:  [INFO] Once installed this environment will be reused.
    472:  [INFO] This may take a few minutes...
    473:  ruff.....................................................................Failed
    474:  - hook id: ruff
    475:  - files were modified by this hook
    476:  Fixed 21 errors:
    477:  - pyretailscience/plots/histogram.py:
    478:  5 × COM812 (missing-trailing-comma)
    479:  - tests/plots/test_histogram.py:
    480:  16 × COM812 (missing-trailing-comma)
    481:  Found 21 errors (21 fixed, 0 remaining).
    482:  ruff-format..............................................................Failed
    ...
    
    486:  2 files reformatted, 25 files left unchanged
    487:  trim trailing whitespace.................................................Passed
    488:  fix end of files.........................................................Passed
    489:  fix python encoding pragma...............................................Passed
    490:  check yaml...............................................................Passed
    491:  debug statements (python)................................................Passed
    492:  pytest...................................................................Passed
    493:  nbstripout...............................................................Passed
    494:  ##[error]Process completed with exit code 1.
    

    ✨ CI feedback usage guide:

    The CI feedback tool (/checks) automatically triggers when a PR has a failed check.
    The tool analyzes the failed checks and provides several feedbacks:

    • Failed stage
    • Failed test name
    • Failure summary
    • Relevant error logs

    In addition to being automatically triggered, the tool can also be invoked manually by commenting on a PR:

    /checks "https://github.com/{repo_name}/actions/runs/{run_number}/job/{job_number}"
    

    where {repo_name} is the name of the repository, {run_number} is the run number of the failed check, and {job_number} is the job number of the failed check.

    Configuration options

    • enable_auto_checks_feedback - if set to true, the tool will automatically provide feedback when a check is failed. Default is true.
    • excluded_checks_list - a list of checks to exclude from the feedback, for example: ["check1", "check2"]. Default is an empty list.
    • enable_help_text - if set to true, the tool will provide a help message with the feedback. Default is true.
    • persistent_comment - if set to true, the tool will overwrite a previous checks comment with the new feedback. Default is true.
    • final_update_message - if persistent_comment is true and updating a previous checks message, the tool will also create a new message: "Persistent checks updated to latest commit". Default is true.

    See more information about the checks tool in the docs.

    Copy link

    @coderabbitai coderabbitai bot left a comment

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    Actionable comments posted: 4

    🧹 Outside diff range and nitpick comments (13)
    docs/api/plots/histogram.md (1)

    1-3: LGTM, but consider enhancing the documentation.

    The basic structure for documenting the Histogram Plot is in place. However, to make it more useful for users, consider the following improvements:

    1. Add a brief introduction explaining what a histogram plot is and its common use cases in retail science.
    2. Include a basic example of how to create a histogram plot using the pyretailscience.plots.histogram module.
    3. Mention any key parameters or options available for customizing the histogram.

    Here's a suggested expansion of the documentation:

    # Histogram Plot
    
    A histogram plot is a graphical representation of the distribution of a dataset. In retail science, it's commonly used to visualize the frequency distribution of various metrics such as sales, customer age, or product prices.
    
    ## Basic Usage
    
    To create a histogram plot using `pyretailscience.plots.histogram`:
    
    ```python
    import pyretailscience.plots as plots
    
    data = [1, 2, 2, 3, 3, 3, 4, 4, 5]
    plots.histogram(data, bins=5, title="Sample Histogram")

    Module Documentation

    ::: pyretailscience.plots.histogram

    
    This expanded version provides more context and a basic example, making it more helpful for users.
    
    </blockquote></details>
    <details>
    <summary>mkdocs.yml (1)</summary><blockquote>
    
    `27-28`: **LGTM! Consider alphabetizing plot entries for improved navigation.**
    
    The addition of the "Histogram Plot" entry is consistent with the existing structure and aligns with the PR objective. It enhances the documentation by providing easy access to information about the new plot type.
    
    
    For improved navigation, consider alphabetizing the plot entries. You could reorder them as follows:
    
    ```yaml
          - Histogram Plot: api/plots/histogram.md
          - Line Plot: api/plots/line.md
    

    This alphabetical order would make it easier for users to locate specific plot types as the number of available plots grows.

    pyretailscience/style/graph_utils.py (1)

    90-91: LGTM! Consider removing redundant comment.

    The changes improve the graph's readability by setting a white background and placing grid lines behind the plot elements. These are good practices for graph styling.

    Consider removing the comment on line 90 as the code is self-explanatory:

    -    ax.set_facecolor("w")  # set background colour to white
    +    ax.set_facecolor("w")
    tests/plots/test_histogram.py (3)

    13-13: Minor style improvement: Remove empty parentheses from pytest.fixture decorators

    For better readability and consistency with pytest best practices, remove the empty parentheses from the @pytest.fixture() decorators.

    Apply this change to the affected lines:

    -@pytest.fixture()
    +@pytest.fixture

    Also applies to: 22-22, 29-29, 42-42

    🧰 Tools
    🪛 Ruff

    13-13: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    261-267: LGTM with a minor suggestion: Good error handling test

    This test case effectively verifies that the plot function raises a ValueError when the required value_col parameter is missing. It's a crucial check for proper error handling.

    For consistency with other test cases, consider using a fixture for the ax parameter:

    def test_plot_missing_value_col_raises_error(sample_dataframe):
        """Test the plot function raises an error when value_col is missing."""
        _, ax = plt.subplots()
        with pytest.raises(ValueError, match="Please provide a value column to plot."):
            plot(df=sample_dataframe, value_col=None, ax=ax)

    This change aligns the test more closely with how the plot function is typically called in other tests.


    37-37: Style improvement: Add trailing commas to multi-line structures

    For better readability and easier version control diffs, consider adding trailing commas to multi-line lists, dictionaries, and function calls throughout the file. This practice makes it easier to add or remove items in the future without affecting surrounding lines in version control.

    Here's an example of how to apply this change:

     return pd.DataFrame(
         {
             "value": [1, 2, 3, 4, 5],
    -        "category": ["A", "A", "B", "B", "B"]
    +        "category": ["A", "A", "B", "B", "B"],
         }
     )

    Apply this change consistently throughout the file for all multi-line structures.

    Also applies to: 64-64, 85-85, 106-106, 127-127, 148-148, 169-169, 182-182, 190-190, 200-200, 208-208, 218-218, 226-226, 236-236, 248-248, 256-256

    🧰 Tools
    🪛 Ruff

    37-37: Trailing comma missing

    Add trailing comma

    (COM812)

    docs/analysis_modules.md (3)

    53-53: Add a blank line before the section header.

    To improve readability and consistency with other sections, add a blank line before the "Histogram Plot" header.

    Apply this change:

    +
     ### Histogram Plot
    🧰 Tools
    🪛 Markdownlint

    53-53: Expected: 1; Actual: 0; Below
    Headings should be surrounded by blank lines

    (MD022, blanks-around-headings)


    56-56: Replace the image placeholder with the actual histogram plot image.

    The image placeholder needs to be updated with the actual histogram plot image to provide visual context for the section.

    Update the image source once the actual image is available:

    ![Histogram Plot](assets/images/analysis_modules/plots/histogram_plot.svg){ align=right loading=lazy width="50%"}

    58-58: Consider breaking long lines for better readability.

    Two lines in this section exceed the recommended line length of 120 characters. Consider breaking them into multiple lines for improved readability.

    Apply these changes:

    -Histograms are particularly useful for visualizing the distribution of data, allowing you to see how values in one or more metrics are spread across different ranges. This module also supports grouping by categories, enabling you to compare the distributions across different groups. When grouping by a category, multiple histograms are generated on the same plot, allowing for easy comparison across categories.
    +Histograms are particularly useful for visualizing the distribution of data, allowing you to see how values in one or
    +more metrics are spread across different ranges. This module also supports grouping by categories, enabling you to
    +compare the distributions across different groups. When grouping by a category, multiple histograms are generated on
    +the same plot, allowing for easy comparison across categories.
    
    -This module allows you to customize legends, axes, and other visual elements, as well as apply clipping or filtering on the data values to focus on specific ranges.
    +This module allows you to customize legends, axes, and other visual elements, as well as apply clipping or filtering
    +on the data values to focus on specific ranges.

    Also applies to: 66-66

    🧰 Tools
    🪛 Markdownlint

    58-58: Expected: 120; Actual: 412
    Line length

    (MD013, line-length)

    pyretailscience/plots/histogram.py (4)

    97-97: Add a trailing comma after the last argument in function call.

    In the function call to apply_range_clipping, the last argument range_method=range_method is missing a trailing comma. Adding a trailing comma improves readability and follows PEP8 style guidelines.

    Apply this diff to fix the issue:

     df = apply_range_clipping(
         df=df,
         value_col=value_col,
         range_lower=range_lower,
         range_upper=range_upper,
    -    range_method=range_method
    +    range_method=range_method,
     )
    🧰 Tools
    🪛 Ruff

    97-97: Trailing comma missing

    Add trailing comma

    (COM812)


    105-105: Add a trailing comma after the last argument in function call.

    The function call to _plot_histogram is missing a trailing comma after **kwargs. This enhances code readability and maintains consistency.

    Apply this diff:

     ax = _plot_histogram(
         df=df,
         value_col=value_col,
         group_col=group_col,
         ax=ax,
         cmap=cmap,
         num_histograms=num_histograms,
    -    **kwargs
    +    **kwargs,
     )
    🧰 Tools
    🪛 Ruff

    105-105: Trailing comma missing

    Add trailing comma

    (COM812)


    146-146: Add a trailing comma after the last parameter in function definition.

    In the function _prepare_dataframe, adding a trailing comma after the last parameter improves readability and aligns with PEP8 guidelines.

    Apply this diff:

     def _prepare_dataframe(
    -    data: pd.DataFrame | pd.Series, value_col: str | list[str] | None, group_col: str | None
    +    data: pd.DataFrame | pd.Series, value_col: str | list[str] | None, group_col: str | None,
     ) -> pd.DataFrame:
    🧰 Tools
    🪛 Ruff

    146-146: Trailing comma missing

    Add trailing comma

    (COM812)


    43-52: Organize imports according to PEP8 recommendations.

    The import statements can be organized into standard library imports, third-party imports, and local application imports to enhance readability.

    Apply this diff:

     from typing import Literal
    
    +import numpy as np
    +import pandas as pd
     from matplotlib.axes import Axes, SubplotBase
     from matplotlib.colors import ListedColormap
    
    -import numpy as np
    -import pandas as pd
     import pyretailscience.style.graph_utils as gu
     from pyretailscience.style.tailwind import get_base_cmap

    This groups the imports logically: standard library (typing), third-party (numpy, pandas, matplotlib), and local modules (pyretailscience).

    📜 Review details

    Configuration used: CodeRabbit UI
    Review profile: CHILL

    📥 Commits

    Files that changed from the base of the PR and between 6a0c9cd and a22ae98.

    ⛔ Files ignored due to path filters (1)
    • docs/assets/images/analysis_modules/plots/histogram_plot.svg is excluded by !**/*.svg
    📒 Files selected for processing (7)
    • docs/analysis_modules.md (1 hunks)
    • docs/api/plots/histogram.md (1 hunks)
    • mkdocs.yml (1 hunks)
    • pyretailscience/plots/histogram.py (1 hunks)
    • pyretailscience/plots/line.py (1 hunks)
    • pyretailscience/style/graph_utils.py (2 hunks)
    • tests/plots/test_histogram.py (1 hunks)
    ✅ Files skipped from review due to trivial changes (1)
    • pyretailscience/plots/line.py
    🧰 Additional context used
    🪛 Markdownlint
    docs/analysis_modules.md

    58-58: Expected: 120; Actual: 412
    Line length

    (MD013, line-length)


    66-66: Expected: 120; Actual: 164
    Line length

    (MD013, line-length)


    53-53: Expected: 1; Actual: 0; Below
    Headings should be surrounded by blank lines

    (MD022, blanks-around-headings)

    🪛 Ruff
    pyretailscience/plots/histogram.py

    97-97: Trailing comma missing

    Add trailing comma

    (COM812)


    105-105: Trailing comma missing

    Add trailing comma

    (COM812)


    146-146: Trailing comma missing

    Add trailing comma

    (COM812)


    200-200: Trailing comma missing

    Add trailing comma

    (COM812)


    203-203: Trailing comma missing

    Add trailing comma

    (COM812)

    tests/plots/test_histogram.py

    13-13: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    22-22: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    29-29: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    37-37: Trailing comma missing

    Add trailing comma

    (COM812)


    42-42: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    64-64: Trailing comma missing

    Add trailing comma

    (COM812)


    85-85: Trailing comma missing

    Add trailing comma

    (COM812)


    106-106: Trailing comma missing

    Add trailing comma

    (COM812)


    127-127: Trailing comma missing

    Add trailing comma

    (COM812)


    148-148: Trailing comma missing

    Add trailing comma

    (COM812)


    169-169: Trailing comma missing

    Add trailing comma

    (COM812)


    182-182: Trailing comma missing

    Add trailing comma

    (COM812)


    190-190: Trailing comma missing

    Add trailing comma

    (COM812)


    200-200: Trailing comma missing

    Add trailing comma

    (COM812)


    208-208: Trailing comma missing

    Add trailing comma

    (COM812)


    218-218: Trailing comma missing

    Add trailing comma

    (COM812)


    226-226: Trailing comma missing

    Add trailing comma

    (COM812)


    236-236: Trailing comma missing

    Add trailing comma

    (COM812)


    248-248: Trailing comma missing

    Add trailing comma

    (COM812)


    256-256: Trailing comma missing

    Add trailing comma

    (COM812)

    🔇 Additional comments (9)
    docs/api/plots/histogram.md (1)

    3-3: Verify the documentation syntax.

    The syntax ::: pyretailscience.plots.histogram is used to include the module documentation. This appears to be using MkDocs-style syntax, specifically the "mkdocstrings" plugin.

    To ensure this syntax is correct and the module is properly documented, please run the following verification:

    This script will help verify that the module exists, is properly placed, and contains docstrings. It also checks for the presence of mkdocs configuration with the mkdocstrings plugin.

    ✅ Verification successful

    Comment on lines 120 to 126
    # Add the legend only if legend_title is provided or move_legend_outside is True
    if legend_title or move_legend_outside:
    legend = ax.legend()
    if move_legend_outside and legend:
    legend.set_bbox_to_anchor((1.05, 1))
    if legend_title:
    if legend_title and legend:
    legend.set_title(legend_title)
    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    ⚠️ Potential issue

    LGTM! Fix indentation on line 125.

    The changes improve legend handling by simplifying the conditions for adding a legend and ensuring the legend title is set only when the legend exists. This aligns well with the PR objective of adding a standard histogram plot.

    There's a minor indentation issue on line 125. Please apply the following fix:

         if legend_title or move_legend_outside:
             legend = ax.legend()
             if move_legend_outside and legend:
                 legend.set_bbox_to_anchor((1.05, 1))
    -        if legend_title and legend:
    -            legend.set_title(legend_title)
    +         if legend_title and legend:
    +             legend.set_title(legend_title)
    📝 Committable suggestion

    ‼️ IMPORTANT
    Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

    Suggested change
    # Add the legend only if legend_title is provided or move_legend_outside is True
    if legend_title or move_legend_outside:
    legend = ax.legend()
    if move_legend_outside and legend:
    legend.set_bbox_to_anchor((1.05, 1))
    if legend_title:
    if legend_title and legend:
    legend.set_title(legend_title)
    # Add the legend only if legend_title is provided or move_legend_outside is True
    if legend_title or move_legend_outside:
    legend = ax.legend()
    if move_legend_outside and legend:
    legend.set_bbox_to_anchor((1.05, 1))
    if legend_title and legend:
    legend.set_title(legend_title)

    Comment on lines +123 to +143
    def _prepare_value_col(df: pd.DataFrame | pd.Series, value_col: str | list[str] | None) -> list[str]:
    """Ensures that value_col is properly handled and returned as a list.

    Args:
    df (pd.DataFrame | pd.Series): The input dataframe or series.
    value_col (str or list of str, optional): The column(s) to plot. If a single string, it is converted to a list.

    Returns:
    list[str]: The processed value_col as a list of strings.
    """
    if isinstance(df, pd.Series):
    return ["value"] if value_col is None else [value_col]

    if value_col is None:
    raise ValueError("Please provide a value column to plot.")

    if isinstance(value_col, str):
    value_col = [value_col]

    return value_col

    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    🛠️ Refactor suggestion

    Refactor to eliminate code duplication between _prepare_value_col and _prepare_dataframe.

    The functions _prepare_value_col and _prepare_dataframe contain overlapping logic for handling value_col, group_col, and data input types. Refactoring these functions can reduce code duplication and improve maintainability.

    Consider combining these functions or restructuring them to share common preprocessing steps.

    Also applies to: 145-171

    Comment on lines 197 to 204
    col: df[col].apply(
    lambda x: np.nan
    if (range_lower is not None and x < range_lower) or (range_upper is not None and x > range_upper)
    else x
    )
    for col in value_col
    }
    )
    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    🛠️ Refactor suggestion

    Refactor to use vectorized operations instead of apply for better performance.

    In the fillna method of apply_range_clipping, using df[col].apply(lambda x: ...) can be inefficient for large DataFrames. Refactoring to use vectorized operations enhances performance and code clarity.

    Apply this diff to refactor the code:

     return df.assign(
         **{
    -        col: df[col].apply(
    -            lambda x: np.nan
    -            if (range_lower is not None and x < range_lower) or (range_upper is not None and x > range_upper)
    -            else x
    -        )
    +        col: df[col].where(
    +            (
    +                (range_lower is None) | (df[col] >= range_lower)
    +            ) & (
    +                (range_upper is None) | (df[col] <= range_upper)
    +            ),
    +            np.nan
    +        )
         for col in value_col
         }
     )

    This refactoring uses where with boolean indexing, which is more efficient than apply with a lambda function.

    📝 Committable suggestion

    ‼️ IMPORTANT
    Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

    Suggested change
    col: df[col].apply(
    lambda x: np.nan
    if (range_lower is not None and x < range_lower) or (range_upper is not None and x > range_upper)
    else x
    )
    for col in value_col
    }
    )
    col: df[col].where(
    (
    (range_lower is None) | (df[col] >= range_lower)
    ) & (
    (range_upper is None) | (df[col] <= range_upper)
    ),
    np.nan
    )
    for col in value_col
    }
    )
    🧰 Tools
    🪛 Ruff

    200-200: Trailing comma missing

    Add trailing comma

    (COM812)


    203-203: Trailing comma missing

    Add trailing comma

    (COM812)

    Comment on lines 192 to 206
    if range_lower is not None or range_upper is not None:
    if range_method == "clip":
    return df.assign(**{col: df[col].clip(lower=range_lower, upper=range_upper) for col in value_col})
    return df.assign(
    **{
    col: df[col].apply(
    lambda x: np.nan
    if (range_lower is not None and x < range_lower) or (range_upper is not None and x > range_upper)
    else x
    )
    for col in value_col
    }
    )

    return df
    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    ⚠️ Potential issue

    Add error handling for invalid range_method values.

    Currently, if range_method is set to a value other than "clip" or "fillna", the function returns the unmodified DataFrame without any notification. It's important to handle invalid values to prevent unintended behavior.

    Consider adding a check and raising a ValueError for invalid range_method values:

     if range_lower is not None or range_upper is not None:
         if range_method == "clip":
             return df.assign(**{col: df[col].clip(lower=range_lower, upper=range_upper) for col in value_col})
         elif range_method == "fillna":
             return df.assign(
                 **{
                     col: df[col].where(
                         (
                             (range_lower is None) | (df[col] >= range_lower)
                         ) & (
                             (range_upper is None) | (df[col] <= range_upper)
                         ),
                         np.nan
                     )
                     for col in value_col
                 }
             )
    +    else:
    +        raise ValueError(f"Invalid range_method: {range_method}. Expected 'clip' or 'fillna'.")
     
     return df

    Committable suggestion was skipped due to low confidence.

    🧰 Tools
    🪛 Ruff

    200-200: Trailing comma missing

    Add trailing comma

    (COM812)


    203-203: Trailing comma missing

    Add trailing comma

    (COM812)

    Copy link

    codecov bot commented Sep 27, 2024

    Codecov Report

    Attention: Patch coverage is 75.23810% with 26 lines in your changes missing coverage. Please review.

    Files with missing lines Patch % Lines
    pyretailscience/style/graph_utils.py 36.66% 18 Missing and 1 partial ⚠️
    pyretailscience/plots/histogram.py 87.93% 3 Missing and 4 partials ⚠️
    Files with missing lines Coverage Δ
    pyretailscience/plots/line.py 95.65% <100.00%> (ø)
    pyretailscience/style/tailwind.py 95.58% <100.00%> (+0.58%) ⬆️
    pyretailscience/plots/histogram.py 87.93% <87.93%> (ø)
    pyretailscience/style/graph_utils.py 67.70% <36.66%> (-14.39%) ⬇️

    Copy link

    @coderabbitai coderabbitai bot left a comment

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    Actionable comments posted: 4

    🧹 Outside diff range and nitpick comments (4)
    tests/plots/test_histogram.py (4)

    13-13: Simplify fixture decorator by removing parentheses

    You can remove the parentheses from the @pytest.fixture() decorator when no parameters are required.

    Apply this diff to simplify the decorator:

    -@pytest.fixture()
    +@pytest.fixture
    🧰 Tools
    🪛 Ruff

    13-13: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    22-22: Simplify fixture decorator by removing parentheses

    You can remove the parentheses from the @pytest.fixture() decorator when no parameters are required.

    Apply this diff to simplify the decorator:

    -@pytest.fixture()
    +@pytest.fixture
    🧰 Tools
    🪛 Ruff

    22-22: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    29-29: Simplify fixture decorator by removing parentheses

    You can remove the parentheses from the @pytest.fixture() decorator when no parameters are required.

    Apply this diff to simplify the decorator:

    -@pytest.fixture()
    +@pytest.fixture
    🧰 Tools
    🪛 Ruff

    29-29: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    42-42: Simplify fixture decorator by removing parentheses

    You can remove the parentheses from the @pytest.fixture() decorator when no parameters are required.

    Apply this diff to simplify the decorator:

    -@pytest.fixture()
    +@pytest.fixture
    🧰 Tools
    🪛 Ruff

    42-42: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)

    📜 Review details

    Configuration used: CodeRabbit UI
    Review profile: CHILL

    📥 Commits

    Files that changed from the base of the PR and between a22ae98 and 5064937.

    📒 Files selected for processing (2)
    • pyretailscience/plots/histogram.py (1 hunks)
    • tests/plots/test_histogram.py (1 hunks)
    🧰 Additional context used
    🪛 Ruff
    tests/plots/test_histogram.py

    13-13: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    22-22: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    29-29: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    42-42: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)

    Comment on lines 266 to 278
    return df[value_col].plot(kind="hist", ax=ax, alpha=0.5, legend=add_legend, color=cmap.colors[0], **kwargs)

    df_pivot = df.pivot(columns=group_col, values=value_col[0])

    # Plot all columns at once
    return df_pivot.plot(
    kind="hist",
    ax=ax,
    alpha=0.5,
    legend=add_legend,
    color=cmap.colors[: len(df_pivot.columns)], # Use the appropriate number of colors
    **kwargs,
    )
    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    ⚠️ Potential issue

    Issue: Inconsistent handling of multiple value_col with group_col

    When group_col is provided, the _plot_histogram function only plots the first value column (value_col[0]), as seen on line 268. If value_col contains multiple columns, the additional columns are ignored, which may not be the intended behavior.

    Consider updating the function to either support plotting multiple value_col when group_col is provided, or explicitly raise a ValueError when multiple value_col are provided along with a group_col, to prevent unexpected behavior.

    Comment on lines 266 to 267
    return df[value_col].plot(kind="hist", ax=ax, alpha=0.5, legend=add_legend, color=cmap.colors[0], **kwargs)

    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    ⚠️ Potential issue

    Issue: All histograms plotted with the same color when multiple value_col are provided

    When plotting multiple value_col without a group_col, the code assigns the same color to all histograms by using color=cmap.colors[0] at line 266. This results in all histograms appearing in the same color, making it difficult to distinguish between them.

    Consider modifying the color parameter to use a list of colors corresponding to each value column:

    - return df[value_col].plot(kind="hist", ax=ax, alpha=0.5, legend=add_legend, color=cmap.colors[0], **kwargs)
    + return df[value_col].plot(
    +     kind="hist",
    +     ax=ax,
    +     alpha=0.5,
    +     legend=add_legend,
    +     color=cmap.colors[:len(value_col)],
    +     **kwargs,
    + )
    📝 Committable suggestion

    ‼️ IMPORTANT
    Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

    Suggested change
    return df[value_col].plot(kind="hist", ax=ax, alpha=0.5, legend=add_legend, color=cmap.colors[0], **kwargs)
    return df[value_col].plot(
    kind="hist",
    ax=ax,
    alpha=0.5,
    legend=add_legend,
    color=cmap.colors[:len(value_col)],
    **kwargs,
    )

    resulted_ax = plot(df=sample_dataframe, value_col="value", ax=ax)

    # Verify that df.plot was called with correct parameters
    pd.DataFrame.plot.assert_called_once_with(kind="hist", ax=ax, alpha=0.5, legend=False, color=mocker.ANY)
    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    ⚠️ Potential issue

    Incorrect assertion on the mocked DataFrame.plot method

    When mocking instance methods like DataFrame.plot, asserting directly on pd.DataFrame.plot may not capture the calls made by the DataFrame instances in your tests. Instead, you should mock or spy on the plot method of the specific DataFrame or Series instances you're using.

    Solution: Spy on the plot method of the DataFrame or Series instances

    Adjust your test functions by adding a spy on the plot method of the DataFrame or Series instance and then assert on that.

    For example, in your test function at line 51:

     def test_plot_single_histogram_no_legend(sample_dataframe, mocker):
         """Test the plot function with a single histogram and no legend."""
         # Create the plot axis using plt.subplots()
         _, ax = plt.subplots()
    
    +    # Spy on the plot method of the DataFrame instance
    +    mocker.spy(sample_dataframe, 'plot')
    
         # Call the plot function
         resulted_ax = plot(df=sample_dataframe, value_col="value", ax=ax)
    
         # Verify that df.plot was called with correct parameters
    -    pd.DataFrame.plot.assert_called_once_with(kind="hist", ax=ax, alpha=0.5, legend=False, color=mocker.ANY)
    +    sample_dataframe.plot.assert_called_once_with(kind="hist", ax=ax, alpha=0.5, legend=False, color=mocker.ANY)

    Repeat this adjustment for the other test functions at lines 77, 103, 129, 155, and 181 where you are asserting on pd.DataFrame.plot or pd.Series.plot.

    Also applies to: 86-86, 112-112, 138-138, 164-164, 190-190

    Copy link
    Contributor

    PR-Agent was enabled for this repository. To continue using it, please link your git user with your CodiumAI identity here.

    CI Failure Feedback 🧐

    Action: Pre-Commit

    Failed stage: Run Pre-commit [❌]

    Failed test name: ruff-format

    Failure summary:

    The action failed because the ruff-format check did not pass. Specifically:

  • 1 file was reformatted, indicating that the code did not meet the formatting standards required by
    ruff-format.
  • The failure of this check resulted in the process completing with exit code 1.

  • Relevant error logs:
    1:  ##[group]Operating System
    2:  Ubuntu
    ...
    
    467:  [INFO] This may take a few minutes...
    468:  [INFO] Installing environment for https://github.com/pre-commit/pre-commit-hooks.
    469:  [INFO] Once installed this environment will be reused.
    470:  [INFO] This may take a few minutes...
    471:  [INFO] Installing environment for https://github.com/kynan/nbstripout.
    472:  [INFO] Once installed this environment will be reused.
    473:  [INFO] This may take a few minutes...
    474:  ruff.....................................................................Passed
    475:  ruff-format..............................................................Failed
    ...
    
    479:  1 file reformatted, 26 files left unchanged
    480:  trim trailing whitespace.................................................Passed
    481:  fix end of files.........................................................Passed
    482:  fix python encoding pragma...............................................Passed
    483:  check yaml...............................................................Passed
    484:  debug statements (python)................................................Passed
    485:  pytest...................................................................Passed
    486:  nbstripout...............................................................Passed
    487:  ##[error]Process completed with exit code 1.
    

    ✨ CI feedback usage guide:

    The CI feedback tool (/checks) automatically triggers when a PR has a failed check.
    The tool analyzes the failed checks and provides several feedbacks:

    • Failed stage
    • Failed test name
    • Failure summary
    • Relevant error logs

    In addition to being automatically triggered, the tool can also be invoked manually by commenting on a PR:

    /checks "https://github.com/{repo_name}/actions/runs/{run_number}/job/{job_number}"
    

    where {repo_name} is the name of the repository, {run_number} is the run number of the failed check, and {job_number} is the job number of the failed check.

    Configuration options

    • enable_auto_checks_feedback - if set to true, the tool will automatically provide feedback when a check is failed. Default is true.
    • excluded_checks_list - a list of checks to exclude from the feedback, for example: ["check1", "check2"]. Default is an empty list.
    • enable_help_text - if set to true, the tool will provide a help message with the feedback. Default is true.
    • persistent_comment - if set to true, the tool will overwrite a previous checks comment with the new feedback. Default is true.
    • final_update_message - if persistent_comment is true and updating a previous checks message, the tool will also create a new message: "Persistent checks updated to latest commit". Default is true.

    See more information about the checks tool in the docs.

    Copy link

    @coderabbitai coderabbitai bot left a comment

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    Actionable comments posted: 1

    📜 Review details

    Configuration used: CodeRabbit UI
    Review profile: CHILL

    📥 Commits

    Files that changed from the base of the PR and between 7cc455e and df4b15b.

    📒 Files selected for processing (1)
    • pyretailscience/plots/histogram.py (1 hunks)
    🔇 Additional comments (1)
    pyretailscience/plots/histogram.py (1)

    1-41: Module docstring is clear and comprehensive

    The module's docstring provides a detailed and well-structured overview of the functionality, features, use cases, limitations, and additional features. This enhances the readability and maintainability of the code.

    clipping them or filling values outside the range with **NaN**. This is particularly useful when visualizing specific
    data ranges.
    - **Comprehensive Customization**: Customize plot titles, axis labels, and legends, with the option to move the legend outside the plot.
    - **Support for Pre-Aggregated Data**: The module assumes that the data has already been aggregated. No aggregation occurs during the plotting process.
    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    Can you remove this line please. I don't think it's necessary in this case

    Suggested change
    - **Support for Pre-Aggregated Data**: The module assumes that the data has already been aggregated. No aggregation occurs during the plotting process.

    Comment on lines 174 to 188
    if range_lower is not None or range_upper is not None:
    if range_method == "clip":
    return df.assign(**{col: df[col].clip(lower=range_lower, upper=range_upper) for col in value_col})
    return df.assign(
    **{
    col: df[col].apply(
    lambda x: np.nan
    if (range_lower is not None and x < range_lower) or (range_upper is not None and x > range_upper)
    else x,
    )
    for col in value_col
    },
    )

    return df
    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    This flow removes the double negatives and simplifies the code. Not sure about the formatting thought. It's a bit tough to do in github.

    Suggested change
    if range_lower is not None or range_upper is not None:
    if range_method == "clip":
    return df.assign(**{col: df[col].clip(lower=range_lower, upper=range_upper) for col in value_col})
    return df.assign(
    **{
    col: df[col].apply(
    lambda x: np.nan
    if (range_lower is not None and x < range_lower) or (range_upper is not None and x > range_upper)
    else x,
    )
    for col in value_col
    },
    )
    return df
    if range_lower is None and range_upper is None:
    return df
    if range_method == "clip":
    return df.assign(**{col: df[col].clip(lower=range_lower, upper=range_upper) for col in value_col})
    return df.assign(
    **{
    col: df[col].apply(
    lambda x: np.nan
    if (range_lower is not None and x < range_lower) or (range_upper is not None and x > range_upper)
    else x,
    )
    for col in value_col
    },
    )

    return df[value_col].plot(
    kind="hist",
    ax=ax,
    alpha=0.5,
    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    Can you make it so that you check kwargs for a key with alpha in it and use that, otherwise use a default value for alpha. Basically, make it so alpha can get overridden.

    Also do you think alpha 0.5 is too transparent?

    return df_pivot.plot(
    kind="hist",
    ax=ax,
    alpha=0.5,
    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    Same override comment here

    Copy link
    Contributor

    qodo-merge-pro bot commented Oct 1, 2024

    PR-Agent was enabled for this repository. To continue using it, please link your git user with your CodiumAI identity here.

    CI Failure Feedback 🧐

    Action: Pre-Commit

    Failed stage: Run Pre-commit [❌]

    Failed test name: test_plot_single_histogram_no_legend

    Failure summary:

    The action failed due to multiple test failures:

  • The trim trailing whitespace pre-commit hook failed because it modified files to remove trailing
    whitespace.
  • Several tests in tests/plots/test_histogram.py failed due to AssertionError. The tests expected the
    plot function to be called with specific parameters, but the actual call included an unexpected
    alpha parameter and specific color values instead of a generic color placeholder.
  • Tests in tests/test_standard_graphs.py failed with a TypeError because the get_base_cmap function
    was called with an unexpected keyword argument num_colors.

  • Relevant error logs:
    1:  ##[group]Operating System
    2:  Ubuntu
    ...
    
    468:  [INFO] Installing environment for https://github.com/pre-commit/pre-commit-hooks.
    469:  [INFO] Once installed this environment will be reused.
    470:  [INFO] This may take a few minutes...
    471:  [INFO] Installing environment for https://github.com/kynan/nbstripout.
    472:  [INFO] Once installed this environment will be reused.
    473:  [INFO] This may take a few minutes...
    474:  ruff.....................................................................Passed
    475:  ruff-format..............................................................Passed
    476:  trim trailing whitespace.................................................Failed
    ...
    
    478:  - exit code: 1
    479:  - files were modified by this hook
    480:  Fixing docs/assets/images/analysis_modules/plots/line_plot.svg
    481:  Fixing docs/assets/images/analysis_modules/plots/histogram_plot.svg
    482:  fix end of files.........................................................Passed
    483:  fix python encoding pragma...............................................Passed
    484:  check yaml...............................................................Passed
    485:  debug statements (python)................................................Passed
    486:  pytest...................................................................Failed
    ...
    
    496:  tests/plots/test_line.py .........                                       [ 16%]
    497:  tests/test_cross_shop.py ........                                        [ 21%]
    498:  tests/test_gain_loss.py ......................                           [ 37%]
    499:  tests/test_options.py ......................                             [ 54%]
    500:  tests/test_product_association.py ...............                        [ 64%]
    501:  tests/test_range_planning.py ........                                    [ 70%]
    502:  tests/test_segmentation.py ......................                        [ 86%]
    503:  tests/test_standard_graphs.py .....FFFFFF.......                         [100%]
    504:  =================================== FAILURES ===================================
    505:  _____________________ test_plot_single_histogram_no_legend _____________________
    506:  self = <MagicMock name='plot' id='140647712857552'>, args = ()
    507:  kwargs = {'ax': <Axes: >, 'color': <ANY>, 'kind': 'hist', 'legend': False}
    508:  expected = call(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    509:  actual = call(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    510:  _error_message = <function NonCallableMock.assert_called_with.<locals>._error_message at 0x7feb06a2a7a0>
    511:  cause = None
    512:  def assert_called_with(self, /, *args, **kwargs):
    513:  """assert that the last call was made with the specified arguments.
    514:  Raises an AssertionError if the args and keyword args passed in are
    515:  different to the last call to the mock."""
    516:  if self.call_args is None:
    517:  expected = self._format_mock_call_signature(args, kwargs)
    518:  actual = 'not called.'
    519:  error_message = ('expected call not found.\nExpected: %s\n  Actual: %s'
    520:  % (expected, actual))
    521:  raise AssertionError(error_message)
    522:  def _error_message():
    523:  msg = self._format_mock_failure_message(args, kwargs)
    524:  return msg
    525:  expected = self._call_matcher(_Call((args, kwargs), two=True))
    526:  actual = self._call_matcher(self.call_args)
    527:  if actual != expected:
    528:  cause = expected if isinstance(expected, Exception) else None
    529:  >           raise AssertionError(_error_message()) from cause
    530:  E           AssertionError: expected call not found.
    531:  E           Expected: plot(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    532:  E             Actual: plot(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    533:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:939: AssertionError
    ...
    
    537:  def assert_called_once_with(self, /, *args, **kwargs):
    538:  """assert that the mock was called exactly once and that that call was
    539:  with the specified arguments."""
    540:  if not self.call_count == 1:
    541:  msg = ("Expected '%s' to be called once. Called %s times.%s"
    542:  % (self._mock_name or 'mock',
    543:  self.call_count,
    544:  self._calls_repr()))
    545:  raise AssertionError(msg)
    546:  >       return self.assert_called_with(*args, **kwargs)
    547:  E       AssertionError: expected call not found.
    ...
    
    565:  E         ?              ^^^^^^
    566:  E         +     'color': [
    567:  E         ?              ^
    568:  E         +         '#22c55e',
    569:  E         +     ],
    570:  E               'kind': 'hist',
    571:  E               'legend': False,
    572:  E           }
    573:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:951: AssertionError
    ...
    
    583:  def test_plot_single_histogram_no_legend(sample_dataframe, mocker):
    584:  """Test the plot function with a single histogram and no legend."""
    585:  # Create the plot axis using plt.subplots()
    586:  _, ax = plt.subplots()
    587:  # Call the plot function
    588:  resulted_ax = plot(df=sample_dataframe, value_col="quantity", ax=ax)
    589:  # Verify that df.plot was called with correct parameters
    590:  >       pd.DataFrame.plot.assert_called_once_with(kind="hist", ax=ax, legend=False, color=mocker.ANY)
    591:  E       AssertionError: expected call not found.
    ...
    
    609:  E         ?              ^^^^^^
    610:  E         +     'color': [
    611:  E         ?              ^
    612:  E         +         '#22c55e',
    613:  E         +     ],
    614:  E               'kind': 'hist',
    615:  E               'legend': False,
    616:  E           }
    617:  tests/plots/test_histogram.py:72: AssertionError
    618:  _____ test_plot_multiple_histograms_with_legend_when_group_col_is_not_nan ______
    619:  self = <MagicMock name='plot' id='140647405838352'>, args = ()
    620:  kwargs = {'ax': <Axes: >, 'color': <ANY>, 'kind': 'hist', 'legend': True}
    621:  expected = call(kind='hist', ax=<Axes: >, legend=True, color=<ANY>)
    622:  actual = call(kind='hist', ax=<Axes: >, legend=True, alpha=0.5, color=['#22c55e', '#3b82f6'])
    623:  _error_message = <function NonCallableMock.assert_called_with.<locals>._error_message at 0x7feb0317cf40>
    624:  cause = None
    625:  def assert_called_with(self, /, *args, **kwargs):
    626:  """assert that the last call was made with the specified arguments.
    627:  Raises an AssertionError if the args and keyword args passed in are
    628:  different to the last call to the mock."""
    629:  if self.call_args is None:
    630:  expected = self._format_mock_call_signature(args, kwargs)
    631:  actual = 'not called.'
    632:  error_message = ('expected call not found.\nExpected: %s\n  Actual: %s'
    633:  % (expected, actual))
    634:  raise AssertionError(error_message)
    635:  def _error_message():
    636:  msg = self._format_mock_failure_message(args, kwargs)
    637:  return msg
    638:  expected = self._call_matcher(_Call((args, kwargs), two=True))
    639:  actual = self._call_matcher(self.call_args)
    640:  if actual != expected:
    641:  cause = expected if isinstance(expected, Exception) else None
    642:  >           raise AssertionError(_error_message()) from cause
    643:  E           AssertionError: expected call not found.
    644:  E           Expected: plot(kind='hist', ax=<Axes: >, legend=True, color=<ANY>)
    645:  E             Actual: plot(kind='hist', ax=<Axes: >, legend=True, alpha=0.5, color=['#22c55e', '#3b82f6'])
    646:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:939: AssertionError
    ...
    
    650:  def assert_called_once_with(self, /, *args, **kwargs):
    651:  """assert that the mock was called exactly once and that that call was
    652:  with the specified arguments."""
    653:  if not self.call_count == 1:
    654:  msg = ("Expected '%s' to be called once. Called %s times.%s"
    655:  % (self._mock_name or 'mock',
    656:  self.call_count,
    657:  self._calls_repr()))
    658:  raise AssertionError(msg)
    659:  >       return self.assert_called_with(*args, **kwargs)
    660:  E       AssertionError: expected call not found.
    ...
    
    679:  E         +     'color': [
    680:  E         ?              ^
    681:  E         +         '#22c55e',
    682:  E         +         '#3b82f6',
    683:  E         +     ],
    684:  E               'kind': 'hist',
    685:  E               'legend': True,
    686:  E           }
    687:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:951: AssertionError
    ...
    
    697:  def test_plot_multiple_histograms_with_legend_when_group_col_is_not_nan(sample_dataframe, mocker):
    698:  """Test the plot function with multiple histograms and a legend when group_col is not None."""
    699:  # Create the plot axis using plt.subplots()
    700:  _, ax = plt.subplots()
    701:  # Call the plot function with grouping
    702:  resulted_ax = plot(df=sample_dataframe, value_col="quantity", group_col="category", ax=ax)
    703:  # Verify that df.plot was called for multiple histograms with correct parameters
    704:  >       pd.DataFrame.plot.assert_called_once_with(kind="hist", ax=ax, legend=True, color=mocker.ANY)
    705:  E       AssertionError: expected call not found.
    ...
    
    724:  E         +     'color': [
    725:  E         ?              ^
    726:  E         +         '#22c55e',
    727:  E         +         '#3b82f6',
    728:  E         +     ],
    729:  E               'kind': 'hist',
    730:  E               'legend': True,
    731:  E           }
    732:  tests/plots/test_histogram.py:98: AssertionError
    733:  ______ test_plot_multiple_histograms_with_legend_when_value_col_is_a_list ______
    734:  self = <MagicMock name='plot' id='140647346073488'>, args = ()
    735:  kwargs = {'ax': <Axes: >, 'color': <ANY>, 'kind': 'hist', 'legend': True}
    736:  expected = call(kind='hist', ax=<Axes: >, legend=True, color=<ANY>)
    737:  actual = call(kind='hist', ax=<Axes: >, legend=True, color=['#22c55e', '#3b82f6'], alpha=0.5)
    738:  _error_message = <function NonCallableMock.assert_called_with.<locals>._error_message at 0x7feb0315b420>
    739:  cause = None
    740:  def assert_called_with(self, /, *args, **kwargs):
    741:  """assert that the last call was made with the specified arguments.
    742:  Raises an AssertionError if the args and keyword args passed in are
    743:  different to the last call to the mock."""
    744:  if self.call_args is None:
    745:  expected = self._format_mock_call_signature(args, kwargs)
    746:  actual = 'not called.'
    747:  error_message = ('expected call not found.\nExpected: %s\n  Actual: %s'
    748:  % (expected, actual))
    749:  raise AssertionError(error_message)
    750:  def _error_message():
    751:  msg = self._format_mock_failure_message(args, kwargs)
    752:  return msg
    753:  expected = self._call_matcher(_Call((args, kwargs), two=True))
    754:  actual = self._call_matcher(self.call_args)
    755:  if actual != expected:
    756:  cause = expected if isinstance(expected, Exception) else None
    757:  >           raise AssertionError(_error_message()) from cause
    758:  E           AssertionError: expected call not found.
    759:  E           Expected: plot(kind='hist', ax=<Axes: >, legend=True, color=<ANY>)
    760:  E             Actual: plot(kind='hist', ax=<Axes: >, legend=True, color=['#22c55e', '#3b82f6'], alpha=0.5)
    761:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:939: AssertionError
    ...
    
    765:  def assert_called_once_with(self, /, *args, **kwargs):
    766:  """assert that the mock was called exactly once and that that call was
    767:  with the specified arguments."""
    768:  if not self.call_count == 1:
    769:  msg = ("Expected '%s' to be called once. Called %s times.%s"
    770:  % (self._mock_name or 'mock',
    771:  self.call_count,
    772:  self._calls_repr()))
    773:  raise AssertionError(msg)
    774:  >       return self.assert_called_with(*args, **kwargs)
    775:  E       AssertionError: expected call not found.
    ...
    
    794:  E         +     'color': [
    795:  E         ?              ^
    796:  E         +         '#22c55e',
    797:  E         +         '#3b82f6',
    798:  E         +     ],
    799:  E               'kind': 'hist',
    800:  E               'legend': True,
    801:  E           }
    802:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:951: AssertionError
    ...
    
    812:  def test_plot_multiple_histograms_with_legend_when_value_col_is_a_list(sample_dataframe, mocker):
    813:  """Test the plot function with multiple histograms and a legend when value_col is a list."""
    814:  # Create the plot axis using plt.subplots()
    815:  _, ax = plt.subplots()
    816:  # Call the plot function with grouping
    817:  resulted_ax = plot(df=sample_dataframe, value_col=["quantity", "category"], ax=ax)
    818:  # Verify that df.plot was called for multiple histograms with correct parameters
    819:  >       pd.DataFrame.plot.assert_called_once_with(kind="hist", ax=ax, legend=True, color=mocker.ANY)
    820:  E       AssertionError: expected call not found.
    ...
    
    839:  E         +     'color': [
    840:  E         ?              ^
    841:  E         +         '#22c55e',
    842:  E         +         '#3b82f6',
    843:  E         +     ],
    844:  E               'kind': 'hist',
    845:  E               'legend': True,
    846:  E           }
    847:  tests/plots/test_histogram.py:124: AssertionError
    848:  __________________________ test_plot_with_source_text __________________________
    849:  self = <MagicMock name='plot' id='140647345802384'>, args = ()
    850:  kwargs = {'ax': <Axes: >, 'color': <ANY>, 'kind': 'hist', 'legend': False}
    851:  expected = call(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    852:  actual = call(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    853:  _error_message = <function NonCallableMock.assert_called_with.<locals>._error_message at 0x7feb01f0c7c0>
    854:  cause = None
    855:  def assert_called_with(self, /, *args, **kwargs):
    856:  """assert that the last call was made with the specified arguments.
    857:  Raises an AssertionError if the args and keyword args passed in are
    858:  different to the last call to the mock."""
    859:  if self.call_args is None:
    860:  expected = self._format_mock_call_signature(args, kwargs)
    861:  actual = 'not called.'
    862:  error_message = ('expected call not found.\nExpected: %s\n  Actual: %s'
    863:  % (expected, actual))
    864:  raise AssertionError(error_message)
    865:  def _error_message():
    866:  msg = self._format_mock_failure_message(args, kwargs)
    867:  return msg
    868:  expected = self._call_matcher(_Call((args, kwargs), two=True))
    869:  actual = self._call_matcher(self.call_args)
    870:  if actual != expected:
    871:  cause = expected if isinstance(expected, Exception) else None
    872:  >           raise AssertionError(_error_message()) from cause
    873:  E           AssertionError: expected call not found.
    874:  E           Expected: plot(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    875:  E             Actual: plot(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    876:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:939: AssertionError
    ...
    
    880:  def assert_called_once_with(self, /, *args, **kwargs):
    881:  """assert that the mock was called exactly once and that that call was
    882:  with the specified arguments."""
    883:  if not self.call_count == 1:
    884:  msg = ("Expected '%s' to be called once. Called %s times.%s"
    885:  % (self._mock_name or 'mock',
    886:  self.call_count,
    887:  self._calls_repr()))
    888:  raise AssertionError(msg)
    889:  >       return self.assert_called_with(*args, **kwargs)
    890:  E       AssertionError: expected call not found.
    ...
    
    908:  E         ?              ^^^^^^
    909:  E         +     'color': [
    910:  E         ?              ^
    911:  E         +         '#22c55e',
    912:  E         +     ],
    913:  E               'kind': 'hist',
    914:  E               'legend': False,
    915:  E           }
    916:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:951: AssertionError
    ...
    
    926:  def test_plot_with_source_text(sample_dataframe, mocker):
    927:  """Test the plot function with source text."""
    928:  # Create the plot axis using plt.subplots()
    929:  _, ax = plt.subplots()
    930:  # Call the plot function with source text
    931:  resulted_ax = plot(df=sample_dataframe, value_col="quantity", ax=ax, source_text="Source: Test Data")
    932:  # Verify that df.plot was called with correct parameters
    933:  >       pd.DataFrame.plot.assert_called_once_with(kind="hist", ax=ax, legend=False, color=mocker.ANY)
    934:  E       AssertionError: expected call not found.
    ...
    
    952:  E         ?              ^^^^^^
    953:  E         +     'color': [
    954:  E         ?              ^
    955:  E         +         '#22c55e',
    956:  E         +     ],
    957:  E               'kind': 'hist',
    958:  E               'legend': False,
    959:  E           }
    960:  tests/plots/test_histogram.py:150: AssertionError
    961:  ___________________________ test_plot_custom_labels ____________________________
    962:  self = <MagicMock name='plot' id='140647345716816'>, args = ()
    963:  kwargs = {'ax': <Axes: >, 'color': <ANY>, 'kind': 'hist', 'legend': False}
    964:  expected = call(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    965:  actual = call(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    966:  _error_message = <function NonCallableMock.assert_called_with.<locals>._error_message at 0x7feb01ff0180>
    967:  cause = None
    968:  def assert_called_with(self, /, *args, **kwargs):
    969:  """assert that the last call was made with the specified arguments.
    970:  Raises an AssertionError if the args and keyword args passed in are
    971:  different to the last call to the mock."""
    972:  if self.call_args is None:
    973:  expected = self._format_mock_call_signature(args, kwargs)
    974:  actual = 'not called.'
    975:  error_message = ('expected call not found.\nExpected: %s\n  Actual: %s'
    976:  % (expected, actual))
    977:  raise AssertionError(error_message)
    978:  def _error_message():
    979:  msg = self._format_mock_failure_message(args, kwargs)
    980:  return msg
    981:  expected = self._call_matcher(_Call((args, kwargs), two=True))
    982:  actual = self._call_matcher(self.call_args)
    983:  if actual != expected:
    984:  cause = expected if isinstance(expected, Exception) else None
    985:  >           raise AssertionError(_error_message()) from cause
    986:  E           AssertionError: expected call not found.
    987:  E           Expected: plot(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    988:  E             Actual: plot(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    989:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:939: AssertionError
    ...
    
    993:  def assert_called_once_with(self, /, *args, **kwargs):
    994:  """assert that the mock was called exactly once and that that call was
    995:  with the specified arguments."""
    996:  if not self.call_count == 1:
    997:  msg = ("Expected '%s' to be called once. Called %s times.%s"
    998:  % (self._mock_name or 'mock',
    999:  self.call_count,
    1000:  self._calls_repr()))
    1001:  raise AssertionError(msg)
    1002:  >       return self.assert_called_with(*args, **kwargs)
    1003:  E       AssertionError: expected call not found.
    ...
    
    1021:  E         ?              ^^^^^^
    1022:  E         +     'color': [
    1023:  E         ?              ^
    1024:  E         +         '#22c55e',
    1025:  E         +     ],
    1026:  E               'kind': 'hist',
    1027:  E               'legend': False,
    1028:  E           }
    1029:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:951: AssertionError
    ...
    
    1039:  def test_plot_custom_labels(sample_dataframe, mocker):
    1040:  """Test the plot function with custom x and y labels."""
    1041:  # Create the plot axis using plt.subplots()
    1042:  _, ax = plt.subplots()
    1043:  # Call the plot function with custom labels for x and y axes
    1044:  resulted_ax = plot(df=sample_dataframe, value_col="quantity", ax=ax, x_label="Custom X", y_label="Custom Y")
    1045:  # Verify that df.plot was called with correct parameters
    1046:  >       pd.DataFrame.plot.assert_called_once_with(kind="hist", ax=ax, legend=False, color=mocker.ANY)
    1047:  E       AssertionError: expected call not found.
    ...
    
    1065:  E         ?              ^^^^^^
    1066:  E         +     'color': [
    1067:  E         ?              ^
    1068:  E         +         '#22c55e',
    1069:  E         +     ],
    1070:  E               'kind': 'hist',
    1071:  E               'legend': False,
    1072:  E           }
    1073:  tests/plots/test_histogram.py:176: AssertionError
    1074:  ____________________________ test_plot_with_series _____________________________
    1075:  self = <MagicMock name='plot' id='140647406283344'>, args = ()
    1076:  kwargs = {'ax': <Axes: >, 'color': <ANY>, 'kind': 'hist', 'legend': False}
    1077:  expected = call(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    1078:  actual = call(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    1079:  _error_message = <function NonCallableMock.assert_called_with.<locals>._error_message at 0x7feb01f4d6c0>
    1080:  cause = None
    1081:  def assert_called_with(self, /, *args, **kwargs):
    1082:  """assert that the last call was made with the specified arguments.
    1083:  Raises an AssertionError if the args and keyword args passed in are
    1084:  different to the last call to the mock."""
    1085:  if self.call_args is None:
    1086:  expected = self._format_mock_call_signature(args, kwargs)
    1087:  actual = 'not called.'
    1088:  error_message = ('expected call not found.\nExpected: %s\n  Actual: %s'
    1089:  % (expected, actual))
    1090:  raise AssertionError(error_message)
    1091:  def _error_message():
    1092:  msg = self._format_mock_failure_message(args, kwargs)
    1093:  return msg
    1094:  expected = self._call_matcher(_Call((args, kwargs), two=True))
    1095:  actual = self._call_matcher(self.call_args)
    1096:  if actual != expected:
    1097:  cause = expected if isinstance(expected, Exception) else None
    1098:  >           raise AssertionError(_error_message()) from cause
    1099:  E           AssertionError: expected call not found.
    1100:  E           Expected: plot(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    1101:  E             Actual: plot(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    1102:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:939: AssertionError
    ...
    
    1106:  def assert_called_once_with(self, /, *args, **kwargs):
    1107:  """assert that the mock was called exactly once and that that call was
    1108:  with the specified arguments."""
    1109:  if not self.call_count == 1:
    1110:  msg = ("Expected '%s' to be called once. Called %s times.%s"
    1111:  % (self._mock_name or 'mock',
    1112:  self.call_count,
    1113:  self._calls_repr()))
    1114:  raise AssertionError(msg)
    1115:  >       return self.assert_called_with(*args, **kwargs)
    1116:  E       AssertionError: expected call not found.
    ...
    
    1134:  E         ?              ^^^^^^
    1135:  E         +     'color': [
    1136:  E         ?              ^
    1137:  E         +         '#22c55e',
    1138:  E         +     ],
    1139:  E               'kind': 'hist',
    1140:  E               'legend': False,
    1141:  E           }
    1142:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:951: AssertionError
    ...
    
    1152:  def test_plot_with_series(sample_series, mocker):
    1153:  """Test the plot function with a pandas series."""
    1154:  # Create the plot axis using plt.subplots()
    1155:  _, ax = plt.subplots()
    1156:  # Call the plot function with a series (instead of dataframe and value_col)
    1157:  resulted_ax = plot(df=sample_series, ax=ax)
    1158:  # Verify that pd.Series.plot was called with correct parameters
    1159:  >       pd.DataFrame.plot.assert_called_once_with(kind="hist", ax=ax, legend=False, color=mocker.ANY)
    1160:  E       AssertionError: expected call not found.
    ...
    
    1178:  E         ?              ^^^^^^
    1179:  E         +     'color': [
    1180:  E         ?              ^
    1181:  E         +         '#22c55e',
    1182:  E         +     ],
    1183:  E               'kind': 'hist',
    1184:  E               'legend': False,
    1185:  E           }
    1186:  tests/plots/test_histogram.py:202: AssertionError
    1187:  ___________________ test_get_base_cmap_three_or_fewer_colors ___________________
    1188:  def test_get_base_cmap_three_or_fewer_colors():
    1189:  """Test the get_base_cmap function with three or fewer colors."""
    1190:  # Test with 3 colors (all green shades)
    1191:  >       gen = get_base_cmap(num_colors=3)
    1192:  E       TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1193:  tests/test_standard_graphs.py:135: TypeError
    1194:  ________________________ test_get_base_cmap_two_colors _________________________
    1195:  def test_get_base_cmap_two_colors():
    1196:  """Test the get_base_cmap function with two colors."""
    1197:  # Test with 2 colors (only green 500 and green 300)
    1198:  >       gen = get_base_cmap(num_colors=2)
    1199:  E       TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1200:  tests/test_standard_graphs.py:148: TypeError
    1201:  _________________________ test_get_base_cmap_one_color _________________________
    1202:  def test_get_base_cmap_one_color():
    1203:  """Test the get_base_cmap function with one color."""
    1204:  # Test with 1 color (only green 500)
    1205:  >       gen = get_base_cmap(num_colors=1)
    1206:  E       TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1207:  tests/test_standard_graphs.py:161: TypeError
    1208:  __________________ test_get_base_cmap_more_than_three_colors ___________________
    1209:  def test_get_base_cmap_more_than_three_colors():
    1210:  """Test the get_base_cmap function with more than three colors."""
    1211:  # Test with 4 colors (mix of all colors)
    1212:  >       gen = get_base_cmap(num_colors=4)
    1213:  E       TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1214:  tests/test_standard_graphs.py:174: TypeError
    1215:  ________________ test_get_base_cmap_more_than_available_colors _________________
    1216:  def test_get_base_cmap_more_than_available_colors():
    1217:  """Test the get_base_cmap function with more colors than available."""
    1218:  # Test with more colors than available, ensure cycling occurs
    1219:  >       gen = get_base_cmap(num_colors=9)
    1220:  E       TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1221:  tests/test_standard_graphs.py:192: TypeError
    1222:  ______________________ test_get_base_cmap_cycle_behavior _______________________
    1223:  def test_get_base_cmap_cycle_behavior():
    1224:  """Test the cycling behavior of the get_base_cmap function."""
    1225:  # Test with cycling colors
    1226:  >       gen = get_base_cmap(num_colors=3)
    1227:  E       TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1228:  tests/test_standard_graphs.py:215: TypeError
    ...
    
    1270:  pyretailscience/standard_graphs.py         130     75     70      3    38%   67-119, 245-320, 376->379, 418-426, 436
    1271:  pyretailscience/style/graph_utils.py        90     18     28      8    73%   16-17, 63-64, 80-86, 125, 132->140, 140->148, 170-178, 193, 208->214, 213
    1272:  pyretailscience/style/tailwind.py           68      2     10      1    96%   316-317
    1273:  ------------------------------------------------------------------------------------
    1274:  TOTAL                                     1041    431    438     28    57%
    1275:  3 files skipped due to complete coverage.
    1276:  Coverage XML written to file coverage.xml
    1277:  =========================== short test summary info ============================
    1278:  FAILED tests/plots/test_histogram.py::test_plot_single_histogram_no_legend - AssertionError: expected call not found.
    ...
    
    1292:  ?              ^^^^^^
    1293:  +     'color': [
    1294:  ?              ^
    1295:  +         '#22c55e',
    1296:  +     ],
    1297:  'kind': 'hist',
    1298:  'legend': False,
    1299:  }
    1300:  FAILED tests/plots/test_histogram.py::test_plot_multiple_histograms_with_legend_when_group_col_is_not_nan - AssertionError: expected call not found.
    ...
    
    1315:  +     'color': [
    1316:  ?              ^
    1317:  +         '#22c55e',
    1318:  +         '#3b82f6',
    1319:  +     ],
    1320:  'kind': 'hist',
    1321:  'legend': True,
    1322:  }
    1323:  FAILED tests/plots/test_histogram.py::test_plot_multiple_histograms_with_legend_when_value_col_is_a_list - AssertionError: expected call not found.
    ...
    
    1338:  +     'color': [
    1339:  ?              ^
    1340:  +         '#22c55e',
    1341:  +         '#3b82f6',
    1342:  +     ],
    1343:  'kind': 'hist',
    1344:  'legend': True,
    1345:  }
    1346:  FAILED tests/plots/test_histogram.py::test_plot_with_source_text - AssertionError: expected call not found.
    ...
    
    1360:  ?              ^^^^^^
    1361:  +     'color': [
    1362:  ?              ^
    1363:  +         '#22c55e',
    1364:  +     ],
    1365:  'kind': 'hist',
    1366:  'legend': False,
    1367:  }
    1368:  FAILED tests/plots/test_histogram.py::test_plot_custom_labels - AssertionError: expected call not found.
    ...
    
    1382:  ?              ^^^^^^
    1383:  +     'color': [
    1384:  ?              ^
    1385:  +         '#22c55e',
    1386:  +     ],
    1387:  'kind': 'hist',
    1388:  'legend': False,
    1389:  }
    1390:  FAILED tests/plots/test_histogram.py::test_plot_with_series - AssertionError: expected call not found.
    ...
    
    1404:  ?              ^^^^^^
    1405:  +     'color': [
    1406:  ?              ^
    1407:  +         '#22c55e',
    1408:  +     ],
    1409:  'kind': 'hist',
    1410:  'legend': False,
    1411:  }
    1412:  FAILED tests/test_standard_graphs.py::test_get_base_cmap_three_or_fewer_colors - TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1413:  FAILED tests/test_standard_graphs.py::test_get_base_cmap_two_colors - TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1414:  FAILED tests/test_standard_graphs.py::test_get_base_cmap_one_color - TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1415:  FAILED tests/test_standard_graphs.py::test_get_base_cmap_more_than_three_colors - TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1416:  FAILED tests/test_standard_graphs.py::test_get_base_cmap_more_than_available_colors - TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1417:  FAILED tests/test_standard_graphs.py::test_get_base_cmap_cycle_behavior - TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1418:  ================= 12 failed, 125 passed, 11 warnings in 4.59s ==================
    1419:  nbstripout...............................................................Passed
    1420:  ##[error]Process completed with exit code 1.
    

    ✨ CI feedback usage guide:

    The CI feedback tool (/checks) automatically triggers when a PR has a failed check.
    The tool analyzes the failed checks and provides several feedbacks:

    • Failed stage
    • Failed test name
    • Failure summary
    • Relevant error logs

    In addition to being automatically triggered, the tool can also be invoked manually by commenting on a PR:

    /checks "https://github.com/{repo_name}/actions/runs/{run_number}/job/{job_number}"
    

    where {repo_name} is the name of the repository, {run_number} is the run number of the failed check, and {job_number} is the job number of the failed check.

    Configuration options

    • enable_auto_checks_feedback - if set to true, the tool will automatically provide feedback when a check is failed. Default is true.
    • excluded_checks_list - a list of checks to exclude from the feedback, for example: ["check1", "check2"]. Default is an empty list.
    • enable_help_text - if set to true, the tool will provide a help message with the feedback. Default is true.
    • persistent_comment - if set to true, the tool will overwrite a previous checks comment with the new feedback. Default is true.
    • final_update_message - if persistent_comment is true and updating a previous checks message, the tool will also create a new message: "Persistent checks updated to latest commit". Default is true.

    See more information about the checks tool in the docs.

    Copy link
    Contributor

    qodo-merge-pro bot commented Oct 1, 2024

    PR-Agent was enabled for this repository. To continue using it, please link your git user with your CodiumAI identity here.

    CI Failure Feedback 🧐

    Action: Pre-Commit

    Failed stage: Run Pre-commit [❌]

    Relevant error logs:
    1:  ##[group]Operating System
    2:  Ubuntu
    ...
    
    468:  [INFO] Installing environment for https://github.com/pre-commit/pre-commit-hooks.
    469:  [INFO] Once installed this environment will be reused.
    470:  [INFO] This may take a few minutes...
    471:  [INFO] Installing environment for https://github.com/kynan/nbstripout.
    472:  [INFO] Once installed this environment will be reused.
    473:  [INFO] This may take a few minutes...
    474:  ruff.....................................................................Passed
    475:  ruff-format..............................................................Passed
    476:  trim trailing whitespace.................................................Failed
    ...
    
    478:  - exit code: 1
    479:  - files were modified by this hook
    480:  Fixing docs/assets/images/analysis_modules/plots/line_plot.svg
    481:  Fixing docs/assets/images/analysis_modules/plots/histogram_plot.svg
    482:  fix end of files.........................................................Passed
    483:  fix python encoding pragma...............................................Passed
    484:  check yaml...............................................................Passed
    485:  debug statements (python)................................................Passed
    486:  pytest...................................................................Failed
    ...
    
    496:  tests/plots/test_line.py .........                                       [ 16%]
    497:  tests/test_cross_shop.py ........                                        [ 21%]
    498:  tests/test_gain_loss.py ......................                           [ 37%]
    499:  tests/test_options.py ......................                             [ 54%]
    500:  tests/test_product_association.py ...............                        [ 64%]
    501:  tests/test_range_planning.py ........                                    [ 70%]
    502:  tests/test_segmentation.py ......................                        [ 86%]
    503:  tests/test_standard_graphs.py .....FFFFFF.......                         [100%]
    504:  =================================== FAILURES ===================================
    505:  _____________________ test_plot_single_histogram_no_legend _____________________
    506:  self = <MagicMock name='plot' id='139871983152592'>, args = ()
    507:  kwargs = {'ax': <Axes: >, 'color': <ANY>, 'kind': 'hist', 'legend': False}
    508:  expected = call(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    509:  actual = call(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    510:  _error_message = <function NonCallableMock.assert_called_with.<locals>._error_message at 0x7f367bdda7a0>
    511:  cause = None
    512:  def assert_called_with(self, /, *args, **kwargs):
    513:  """assert that the last call was made with the specified arguments.
    514:  Raises an AssertionError if the args and keyword args passed in are
    515:  different to the last call to the mock."""
    516:  if self.call_args is None:
    517:  expected = self._format_mock_call_signature(args, kwargs)
    518:  actual = 'not called.'
    519:  error_message = ('expected call not found.\nExpected: %s\n  Actual: %s'
    520:  % (expected, actual))
    521:  raise AssertionError(error_message)
    522:  def _error_message():
    523:  msg = self._format_mock_failure_message(args, kwargs)
    524:  return msg
    525:  expected = self._call_matcher(_Call((args, kwargs), two=True))
    526:  actual = self._call_matcher(self.call_args)
    527:  if actual != expected:
    528:  cause = expected if isinstance(expected, Exception) else None
    529:  >           raise AssertionError(_error_message()) from cause
    530:  E           AssertionError: expected call not found.
    531:  E           Expected: plot(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    532:  E             Actual: plot(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    533:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:939: AssertionError
    ...
    
    537:  def assert_called_once_with(self, /, *args, **kwargs):
    538:  """assert that the mock was called exactly once and that that call was
    539:  with the specified arguments."""
    540:  if not self.call_count == 1:
    541:  msg = ("Expected '%s' to be called once. Called %s times.%s"
    542:  % (self._mock_name or 'mock',
    543:  self.call_count,
    544:  self._calls_repr()))
    545:  raise AssertionError(msg)
    546:  >       return self.assert_called_with(*args, **kwargs)
    547:  E       AssertionError: expected call not found.
    ...
    
    565:  E         ?              ^^^^^^
    566:  E         +     'color': [
    567:  E         ?              ^
    568:  E         +         '#22c55e',
    569:  E         +     ],
    570:  E               'kind': 'hist',
    571:  E               'legend': False,
    572:  E           }
    573:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:951: AssertionError
    ...
    
    583:  def test_plot_single_histogram_no_legend(sample_dataframe, mocker):
    584:  """Test the plot function with a single histogram and no legend."""
    585:  # Create the plot axis using plt.subplots()
    586:  _, ax = plt.subplots()
    587:  # Call the plot function
    588:  resulted_ax = plot(df=sample_dataframe, value_col="quantity", ax=ax)
    589:  # Verify that df.plot was called with correct parameters
    590:  >       pd.DataFrame.plot.assert_called_once_with(kind="hist", ax=ax, legend=False, color=mocker.ANY)
    591:  E       AssertionError: expected call not found.
    ...
    
    609:  E         ?              ^^^^^^
    610:  E         +     'color': [
    611:  E         ?              ^
    612:  E         +         '#22c55e',
    613:  E         +     ],
    614:  E               'kind': 'hist',
    615:  E               'legend': False,
    616:  E           }
    617:  tests/plots/test_histogram.py:72: AssertionError
    618:  _____ test_plot_multiple_histograms_with_legend_when_group_col_is_not_nan ______
    619:  self = <MagicMock name='plot' id='139871984324368'>, args = ()
    620:  kwargs = {'ax': <Axes: >, 'color': <ANY>, 'kind': 'hist', 'legend': True}
    621:  expected = call(kind='hist', ax=<Axes: >, legend=True, color=<ANY>)
    622:  actual = call(kind='hist', ax=<Axes: >, legend=True, alpha=0.5, color=['#22c55e', '#3b82f6'])
    623:  _error_message = <function NonCallableMock.assert_called_with.<locals>._error_message at 0x7f367bcb4f40>
    624:  cause = None
    625:  def assert_called_with(self, /, *args, **kwargs):
    626:  """assert that the last call was made with the specified arguments.
    627:  Raises an AssertionError if the args and keyword args passed in are
    628:  different to the last call to the mock."""
    629:  if self.call_args is None:
    630:  expected = self._format_mock_call_signature(args, kwargs)
    631:  actual = 'not called.'
    632:  error_message = ('expected call not found.\nExpected: %s\n  Actual: %s'
    633:  % (expected, actual))
    634:  raise AssertionError(error_message)
    635:  def _error_message():
    636:  msg = self._format_mock_failure_message(args, kwargs)
    637:  return msg
    638:  expected = self._call_matcher(_Call((args, kwargs), two=True))
    639:  actual = self._call_matcher(self.call_args)
    640:  if actual != expected:
    641:  cause = expected if isinstance(expected, Exception) else None
    642:  >           raise AssertionError(_error_message()) from cause
    643:  E           AssertionError: expected call not found.
    644:  E           Expected: plot(kind='hist', ax=<Axes: >, legend=True, color=<ANY>)
    645:  E             Actual: plot(kind='hist', ax=<Axes: >, legend=True, alpha=0.5, color=['#22c55e', '#3b82f6'])
    646:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:939: AssertionError
    ...
    
    650:  def assert_called_once_with(self, /, *args, **kwargs):
    651:  """assert that the mock was called exactly once and that that call was
    652:  with the specified arguments."""
    653:  if not self.call_count == 1:
    654:  msg = ("Expected '%s' to be called once. Called %s times.%s"
    655:  % (self._mock_name or 'mock',
    656:  self.call_count,
    657:  self._calls_repr()))
    658:  raise AssertionError(msg)
    659:  >       return self.assert_called_with(*args, **kwargs)
    660:  E       AssertionError: expected call not found.
    ...
    
    679:  E         +     'color': [
    680:  E         ?              ^
    681:  E         +         '#22c55e',
    682:  E         +         '#3b82f6',
    683:  E         +     ],
    684:  E               'kind': 'hist',
    685:  E               'legend': True,
    686:  E           }
    687:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:951: AssertionError
    ...
    
    697:  def test_plot_multiple_histograms_with_legend_when_group_col_is_not_nan(sample_dataframe, mocker):
    698:  """Test the plot function with multiple histograms and a legend when group_col is not None."""
    699:  # Create the plot axis using plt.subplots()
    700:  _, ax = plt.subplots()
    701:  # Call the plot function with grouping
    702:  resulted_ax = plot(df=sample_dataframe, value_col="quantity", group_col="category", ax=ax)
    703:  # Verify that df.plot was called for multiple histograms with correct parameters
    704:  >       pd.DataFrame.plot.assert_called_once_with(kind="hist", ax=ax, legend=True, color=mocker.ANY)
    705:  E       AssertionError: expected call not found.
    ...
    
    724:  E         +     'color': [
    725:  E         ?              ^
    726:  E         +         '#22c55e',
    727:  E         +         '#3b82f6',
    728:  E         +     ],
    729:  E               'kind': 'hist',
    730:  E               'legend': True,
    731:  E           }
    732:  tests/plots/test_histogram.py:98: AssertionError
    733:  ______ test_plot_multiple_histograms_with_legend_when_value_col_is_a_list ______
    734:  self = <MagicMock name='plot' id='139871981787088'>, args = ()
    735:  kwargs = {'ax': <Axes: >, 'color': <ANY>, 'kind': 'hist', 'legend': True}
    736:  expected = call(kind='hist', ax=<Axes: >, legend=True, color=<ANY>)
    737:  actual = call(kind='hist', ax=<Axes: >, legend=True, color=['#22c55e', '#3b82f6'], alpha=0.5)
    738:  _error_message = <function NonCallableMock.assert_called_with.<locals>._error_message at 0x7f367bca3420>
    739:  cause = None
    740:  def assert_called_with(self, /, *args, **kwargs):
    741:  """assert that the last call was made with the specified arguments.
    742:  Raises an AssertionError if the args and keyword args passed in are
    743:  different to the last call to the mock."""
    744:  if self.call_args is None:
    745:  expected = self._format_mock_call_signature(args, kwargs)
    746:  actual = 'not called.'
    747:  error_message = ('expected call not found.\nExpected: %s\n  Actual: %s'
    748:  % (expected, actual))
    749:  raise AssertionError(error_message)
    750:  def _error_message():
    751:  msg = self._format_mock_failure_message(args, kwargs)
    752:  return msg
    753:  expected = self._call_matcher(_Call((args, kwargs), two=True))
    754:  actual = self._call_matcher(self.call_args)
    755:  if actual != expected:
    756:  cause = expected if isinstance(expected, Exception) else None
    757:  >           raise AssertionError(_error_message()) from cause
    758:  E           AssertionError: expected call not found.
    759:  E           Expected: plot(kind='hist', ax=<Axes: >, legend=True, color=<ANY>)
    760:  E             Actual: plot(kind='hist', ax=<Axes: >, legend=True, color=['#22c55e', '#3b82f6'], alpha=0.5)
    761:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:939: AssertionError
    ...
    
    765:  def assert_called_once_with(self, /, *args, **kwargs):
    766:  """assert that the mock was called exactly once and that that call was
    767:  with the specified arguments."""
    768:  if not self.call_count == 1:
    769:  msg = ("Expected '%s' to be called once. Called %s times.%s"
    770:  % (self._mock_name or 'mock',
    771:  self.call_count,
    772:  self._calls_repr()))
    773:  raise AssertionError(msg)
    774:  >       return self.assert_called_with(*args, **kwargs)
    775:  E       AssertionError: expected call not found.
    ...
    
    794:  E         +     'color': [
    795:  E         ?              ^
    796:  E         +         '#22c55e',
    797:  E         +         '#3b82f6',
    798:  E         +     ],
    799:  E               'kind': 'hist',
    800:  E               'legend': True,
    801:  E           }
    802:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:951: AssertionError
    ...
    
    812:  def test_plot_multiple_histograms_with_legend_when_value_col_is_a_list(sample_dataframe, mocker):
    813:  """Test the plot function with multiple histograms and a legend when value_col is a list."""
    814:  # Create the plot axis using plt.subplots()
    815:  _, ax = plt.subplots()
    816:  # Call the plot function with grouping
    817:  resulted_ax = plot(df=sample_dataframe, value_col=["quantity", "category"], ax=ax)
    818:  # Verify that df.plot was called for multiple histograms with correct parameters
    819:  >       pd.DataFrame.plot.assert_called_once_with(kind="hist", ax=ax, legend=True, color=mocker.ANY)
    820:  E       AssertionError: expected call not found.
    ...
    
    839:  E         +     'color': [
    840:  E         ?              ^
    841:  E         +         '#22c55e',
    842:  E         +         '#3b82f6',
    843:  E         +     ],
    844:  E               'kind': 'hist',
    845:  E               'legend': True,
    846:  E           }
    847:  tests/plots/test_histogram.py:124: AssertionError
    848:  __________________________ test_plot_with_source_text __________________________
    849:  self = <MagicMock name='plot' id='139871984604112'>, args = ()
    850:  kwargs = {'ax': <Axes: >, 'color': <ANY>, 'kind': 'hist', 'legend': False}
    851:  expected = call(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    852:  actual = call(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    853:  _error_message = <function NonCallableMock.assert_called_with.<locals>._error_message at 0x7f367830c7c0>
    854:  cause = None
    855:  def assert_called_with(self, /, *args, **kwargs):
    856:  """assert that the last call was made with the specified arguments.
    857:  Raises an AssertionError if the args and keyword args passed in are
    858:  different to the last call to the mock."""
    859:  if self.call_args is None:
    860:  expected = self._format_mock_call_signature(args, kwargs)
    861:  actual = 'not called.'
    862:  error_message = ('expected call not found.\nExpected: %s\n  Actual: %s'
    863:  % (expected, actual))
    864:  raise AssertionError(error_message)
    865:  def _error_message():
    866:  msg = self._format_mock_failure_message(args, kwargs)
    867:  return msg
    868:  expected = self._call_matcher(_Call((args, kwargs), two=True))
    869:  actual = self._call_matcher(self.call_args)
    870:  if actual != expected:
    871:  cause = expected if isinstance(expected, Exception) else None
    872:  >           raise AssertionError(_error_message()) from cause
    873:  E           AssertionError: expected call not found.
    874:  E           Expected: plot(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    875:  E             Actual: plot(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    876:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:939: AssertionError
    ...
    
    880:  def assert_called_once_with(self, /, *args, **kwargs):
    881:  """assert that the mock was called exactly once and that that call was
    882:  with the specified arguments."""
    883:  if not self.call_count == 1:
    884:  msg = ("Expected '%s' to be called once. Called %s times.%s"
    885:  % (self._mock_name or 'mock',
    886:  self.call_count,
    887:  self._calls_repr()))
    888:  raise AssertionError(msg)
    889:  >       return self.assert_called_with(*args, **kwargs)
    890:  E       AssertionError: expected call not found.
    ...
    
    908:  E         ?              ^^^^^^
    909:  E         +     'color': [
    910:  E         ?              ^
    911:  E         +         '#22c55e',
    912:  E         +     ],
    913:  E               'kind': 'hist',
    914:  E               'legend': False,
    915:  E           }
    916:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:951: AssertionError
    ...
    
    926:  def test_plot_with_source_text(sample_dataframe, mocker):
    927:  """Test the plot function with source text."""
    928:  # Create the plot axis using plt.subplots()
    929:  _, ax = plt.subplots()
    930:  # Call the plot function with source text
    931:  resulted_ax = plot(df=sample_dataframe, value_col="quantity", ax=ax, source_text="Source: Test Data")
    932:  # Verify that df.plot was called with correct parameters
    933:  >       pd.DataFrame.plot.assert_called_once_with(kind="hist", ax=ax, legend=False, color=mocker.ANY)
    934:  E       AssertionError: expected call not found.
    ...
    
    952:  E         ?              ^^^^^^
    953:  E         +     'color': [
    954:  E         ?              ^
    955:  E         +         '#22c55e',
    956:  E         +     ],
    957:  E               'kind': 'hist',
    958:  E               'legend': False,
    959:  E           }
    960:  tests/plots/test_histogram.py:150: AssertionError
    961:  ___________________________ test_plot_custom_labels ____________________________
    962:  self = <MagicMock name='plot' id='139871981788240'>, args = ()
    963:  kwargs = {'ax': <Axes: >, 'color': <ANY>, 'kind': 'hist', 'legend': False}
    964:  expected = call(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    965:  actual = call(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    966:  _error_message = <function NonCallableMock.assert_called_with.<locals>._error_message at 0x7f36783f0180>
    967:  cause = None
    968:  def assert_called_with(self, /, *args, **kwargs):
    969:  """assert that the last call was made with the specified arguments.
    970:  Raises an AssertionError if the args and keyword args passed in are
    971:  different to the last call to the mock."""
    972:  if self.call_args is None:
    973:  expected = self._format_mock_call_signature(args, kwargs)
    974:  actual = 'not called.'
    975:  error_message = ('expected call not found.\nExpected: %s\n  Actual: %s'
    976:  % (expected, actual))
    977:  raise AssertionError(error_message)
    978:  def _error_message():
    979:  msg = self._format_mock_failure_message(args, kwargs)
    980:  return msg
    981:  expected = self._call_matcher(_Call((args, kwargs), two=True))
    982:  actual = self._call_matcher(self.call_args)
    983:  if actual != expected:
    984:  cause = expected if isinstance(expected, Exception) else None
    985:  >           raise AssertionError(_error_message()) from cause
    986:  E           AssertionError: expected call not found.
    987:  E           Expected: plot(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    988:  E             Actual: plot(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    989:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:939: AssertionError
    ...
    
    993:  def assert_called_once_with(self, /, *args, **kwargs):
    994:  """assert that the mock was called exactly once and that that call was
    995:  with the specified arguments."""
    996:  if not self.call_count == 1:
    997:  msg = ("Expected '%s' to be called once. Called %s times.%s"
    998:  % (self._mock_name or 'mock',
    999:  self.call_count,
    1000:  self._calls_repr()))
    1001:  raise AssertionError(msg)
    1002:  >       return self.assert_called_with(*args, **kwargs)
    1003:  E       AssertionError: expected call not found.
    ...
    
    1021:  E         ?              ^^^^^^
    1022:  E         +     'color': [
    1023:  E         ?              ^
    1024:  E         +         '#22c55e',
    1025:  E         +     ],
    1026:  E               'kind': 'hist',
    1027:  E               'legend': False,
    1028:  E           }
    1029:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:951: AssertionError
    ...
    
    1039:  def test_plot_custom_labels(sample_dataframe, mocker):
    1040:  """Test the plot function with custom x and y labels."""
    1041:  # Create the plot axis using plt.subplots()
    1042:  _, ax = plt.subplots()
    1043:  # Call the plot function with custom labels for x and y axes
    1044:  resulted_ax = plot(df=sample_dataframe, value_col="quantity", ax=ax, x_label="Custom X", y_label="Custom Y")
    1045:  # Verify that df.plot was called with correct parameters
    1046:  >       pd.DataFrame.plot.assert_called_once_with(kind="hist", ax=ax, legend=False, color=mocker.ANY)
    1047:  E       AssertionError: expected call not found.
    ...
    
    1065:  E         ?              ^^^^^^
    1066:  E         +     'color': [
    1067:  E         ?              ^
    1068:  E         +         '#22c55e',
    1069:  E         +     ],
    1070:  E               'kind': 'hist',
    1071:  E               'legend': False,
    1072:  E           }
    1073:  tests/plots/test_histogram.py:176: AssertionError
    1074:  ____________________________ test_plot_with_series _____________________________
    1075:  self = <MagicMock name='plot' id='139871985117264'>, args = ()
    1076:  kwargs = {'ax': <Axes: >, 'color': <ANY>, 'kind': 'hist', 'legend': False}
    1077:  expected = call(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    1078:  actual = call(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    1079:  _error_message = <function NonCallableMock.assert_called_with.<locals>._error_message at 0x7f367834d6c0>
    1080:  cause = None
    1081:  def assert_called_with(self, /, *args, **kwargs):
    1082:  """assert that the last call was made with the specified arguments.
    1083:  Raises an AssertionError if the args and keyword args passed in are
    1084:  different to the last call to the mock."""
    1085:  if self.call_args is None:
    1086:  expected = self._format_mock_call_signature(args, kwargs)
    1087:  actual = 'not called.'
    1088:  error_message = ('expected call not found.\nExpected: %s\n  Actual: %s'
    1089:  % (expected, actual))
    1090:  raise AssertionError(error_message)
    1091:  def _error_message():
    1092:  msg = self._format_mock_failure_message(args, kwargs)
    1093:  return msg
    1094:  expected = self._call_matcher(_Call((args, kwargs), two=True))
    1095:  actual = self._call_matcher(self.call_args)
    1096:  if actual != expected:
    1097:  cause = expected if isinstance(expected, Exception) else None
    1098:  >           raise AssertionError(_error_message()) from cause
    1099:  E           AssertionError: expected call not found.
    1100:  E           Expected: plot(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    1101:  E             Actual: plot(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    1102:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:939: AssertionError
    ...
    
    1106:  def assert_called_once_with(self, /, *args, **kwargs):
    1107:  """assert that the mock was called exactly once and that that call was
    1108:  with the specified arguments."""
    1109:  if not self.call_count == 1:
    1110:  msg = ("Expected '%s' to be called once. Called %s times.%s"
    1111:  % (self._mock_name or 'mock',
    1112:  self.call_count,
    1113:  self._calls_repr()))
    1114:  raise AssertionError(msg)
    1115:  >       return self.assert_called_with(*args, **kwargs)
    1116:  E       AssertionError: expected call not found.
    ...
    
    1134:  E         ?              ^^^^^^
    1135:  E         +     'color': [
    1136:  E         ?              ^
    1137:  E         +         '#22c55e',
    1138:  E         +     ],
    1139:  E               'kind': 'hist',
    1140:  E               'legend': False,
    1141:  E           }
    1142:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:951: AssertionError
    ...
    
    1152:  def test_plot_with_series(sample_series, mocker):
    1153:  """Test the plot function with a pandas series."""
    1154:  # Create the plot axis using plt.subplots()
    1155:  _, ax = plt.subplots()
    1156:  # Call the plot function with a series (instead of dataframe and value_col)
    1157:  resulted_ax = plot(df=sample_series, ax=ax)
    1158:  # Verify that pd.Series.plot was called with correct parameters
    1159:  >       pd.DataFrame.plot.assert_called_once_with(kind="hist", ax=ax, legend=False, color=mocker.ANY)
    1160:  E       AssertionError: expected call not found.
    ...
    
    1178:  E         ?              ^^^^^^
    1179:  E         +     'color': [
    1180:  E         ?              ^
    1181:  E         +         '#22c55e',
    1182:  E         +     ],
    1183:  E               'kind': 'hist',
    1184:  E               'legend': False,
    1185:  E           }
    1186:  tests/plots/test_histogram.py:202: AssertionError
    1187:  ___________________ test_get_base_cmap_three_or_fewer_colors ___________________
    1188:  def test_get_base_cmap_three_or_fewer_colors():
    1189:  """Test the get_base_cmap function with three or fewer colors."""
    1190:  # Test with 3 colors (all green shades)
    1191:  >       gen = get_base_cmap(num_colors=3)
    1192:  E       TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1193:  tests/test_standard_graphs.py:135: TypeError
    1194:  ________________________ test_get_base_cmap_two_colors _________________________
    1195:  def test_get_base_cmap_two_colors():
    1196:  """Test the get_base_cmap function with two colors."""
    1197:  # Test with 2 colors (only green 500 and green 300)
    1198:  >       gen = get_base_cmap(num_colors=2)
    1199:  E       TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1200:  tests/test_standard_graphs.py:148: TypeError
    1201:  _________________________ test_get_base_cmap_one_color _________________________
    1202:  def test_get_base_cmap_one_color():
    1203:  """Test the get_base_cmap function with one color."""
    1204:  # Test with 1 color (only green 500)
    1205:  >       gen = get_base_cmap(num_colors=1)
    1206:  E       TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1207:  tests/test_standard_graphs.py:161: TypeError
    1208:  __________________ test_get_base_cmap_more_than_three_colors ___________________
    1209:  def test_get_base_cmap_more_than_three_colors():
    1210:  """Test the get_base_cmap function with more than three colors."""
    1211:  # Test with 4 colors (mix of all colors)
    1212:  >       gen = get_base_cmap(num_colors=4)
    1213:  E       TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1214:  tests/test_standard_graphs.py:174: TypeError
    1215:  ________________ test_get_base_cmap_more_than_available_colors _________________
    1216:  def test_get_base_cmap_more_than_available_colors():
    1217:  """Test the get_base_cmap function with more colors than available."""
    1218:  # Test with more colors than available, ensure cycling occurs
    1219:  >       gen = get_base_cmap(num_colors=9)
    1220:  E       TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1221:  tests/test_standard_graphs.py:192: TypeError
    1222:  ______________________ test_get_base_cmap_cycle_behavior _______________________
    1223:  def test_get_base_cmap_cycle_behavior():
    1224:  """Test the cycling behavior of the get_base_cmap function."""
    1225:  # Test with cycling colors
    1226:  >       gen = get_base_cmap(num_colors=3)
    1227:  E       TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1228:  tests/test_standard_graphs.py:215: TypeError
    ...
    
    1270:  pyretailscience/standard_graphs.py         130     75     70      3    38%   67-119, 245-320, 376->379, 418-426, 436
    1271:  pyretailscience/style/graph_utils.py        90     18     28      8    73%   16-17, 63-64, 80-86, 125, 132->140, 140->148, 170-178, 193, 208->214, 213
    1272:  pyretailscience/style/tailwind.py           68      2     10      1    96%   316-317
    1273:  ------------------------------------------------------------------------------------
    1274:  TOTAL                                     1041    431    438     28    57%
    1275:  3 files skipped due to complete coverage.
    1276:  Coverage XML written to file coverage.xml
    1277:  =========================== short test summary info ============================
    1278:  FAILED tests/plots/test_histogram.py::test_plot_single_histogram_no_legend - AssertionError: expected call not found.
    ...
    
    1292:  ?              ^^^^^^
    1293:  +     'color': [
    1294:  ?              ^
    1295:  +         '#22c55e',
    1296:  +     ],
    1297:  'kind': 'hist',
    1298:  'legend': False,
    1299:  }
    1300:  FAILED tests/plots/test_histogram.py::test_plot_multiple_histograms_with_legend_when_group_col_is_not_nan - AssertionError: expected call not found.
    ...
    
    1315:  +     'color': [
    1316:  ?              ^
    1317:  +         '#22c55e',
    1318:  +         '#3b82f6',
    1319:  +     ],
    1320:  'kind': 'hist',
    1321:  'legend': True,
    1322:  }
    1323:  FAILED tests/plots/test_histogram.py::test_plot_multiple_histograms_with_legend_when_value_col_is_a_list - AssertionError: expected call not found.
    ...
    
    1338:  +     'color': [
    1339:  ?              ^
    1340:  +         '#22c55e',
    1341:  +         '#3b82f6',
    1342:  +     ],
    1343:  'kind': 'hist',
    1344:  'legend': True,
    1345:  }
    1346:  FAILED tests/plots/test_histogram.py::test_plot_with_source_text - AssertionError: expected call not found.
    ...
    
    1360:  ?              ^^^^^^
    1361:  +     'color': [
    1362:  ?              ^
    1363:  +         '#22c55e',
    1364:  +     ],
    1365:  'kind': 'hist',
    1366:  'legend': False,
    1367:  }
    1368:  FAILED tests/plots/test_histogram.py::test_plot_custom_labels - AssertionError: expected call not found.
    ...
    
    1382:  ?              ^^^^^^
    1383:  +     'color': [
    1384:  ?              ^
    1385:  +         '#22c55e',
    1386:  +     ],
    1387:  'kind': 'hist',
    1388:  'legend': False,
    1389:  }
    1390:  FAILED tests/plots/test_histogram.py::test_plot_with_series - AssertionError: expected call not found.
    ...
    
    1404:  ?              ^^^^^^
    1405:  +     'color': [
    1406:  ?              ^
    1407:  +         '#22c55e',
    1408:  +     ],
    1409:  'kind': 'hist',
    1410:  'legend': False,
    1411:  }
    1412:  FAILED tests/test_standard_graphs.py::test_get_base_cmap_three_or_fewer_colors - TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1413:  FAILED tests/test_standard_graphs.py::test_get_base_cmap_two_colors - TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1414:  FAILED tests/test_standard_graphs.py::test_get_base_cmap_one_color - TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1415:  FAILED tests/test_standard_graphs.py::test_get_base_cmap_more_than_three_colors - TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1416:  FAILED tests/test_standard_graphs.py::test_get_base_cmap_more_than_available_colors - TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1417:  FAILED tests/test_standard_graphs.py::test_get_base_cmap_cycle_behavior - TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1418:  ================= 12 failed, 125 passed, 11 warnings in 4.74s ==================
    1419:  nbstripout...............................................................Passed
    1420:  ##[error]Process completed with exit code 1.
    

    ✨ CI feedback usage guide:

    The CI feedback tool (/checks) automatically triggers when a PR has a failed check.
    The tool analyzes the failed checks and provides several feedbacks:

    • Failed stage
    • Failed test name
    • Failure summary
    • Relevant error logs

    In addition to being automatically triggered, the tool can also be invoked manually by commenting on a PR:

    /checks "https://github.com/{repo_name}/actions/runs/{run_number}/job/{job_number}"
    

    where {repo_name} is the name of the repository, {run_number} is the run number of the failed check, and {job_number} is the job number of the failed check.

    Configuration options

    • enable_auto_checks_feedback - if set to true, the tool will automatically provide feedback when a check is failed. Default is true.
    • excluded_checks_list - a list of checks to exclude from the feedback, for example: ["check1", "check2"]. Default is an empty list.
    • enable_help_text - if set to true, the tool will provide a help message with the feedback. Default is true.
    • persistent_comment - if set to true, the tool will overwrite a previous checks comment with the new feedback. Default is true.
    • final_update_message - if persistent_comment is true and updating a previous checks message, the tool will also create a new message: "Persistent checks updated to latest commit". Default is true.

    See more information about the checks tool in the docs.

    Copy link

    @coderabbitai coderabbitai bot left a comment

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    Actionable comments posted: 8

    🧹 Outside diff range and nitpick comments (8)
    tests/plots/test_line.py (3)

    28-32: LGTM: Improved color mocking for tests.

    The changes to the _mock_get_base_cmap fixture are well-implemented. Using a cycling color generator instead of a ListedColormap provides more flexibility for testing scenarios with an unknown number of color assignments.

    Consider defining the colors list as a constant at the module level or as a parameter to the fixture for easier maintenance and reusability. For example:

    MOCK_COLORS = ["#FF0000", "#00FF00", "#0000FF"]
    
    @pytest.fixture()
    def _mock_get_base_cmap(mocker, colors=MOCK_COLORS):
        color_gen = cycle(colors)
        mocker.patch("pyretailscience.style.tailwind.get_base_cmap", return_value=color_gen)

    This approach would make it easier to modify the mock colors if needed in the future.


    Line range hint 213-241: LGTM: Comprehensive test case for combined legend title and positioning.

    The new test case test_plot_with_legend_title_and_move_outside is a valuable addition to the test suite. It effectively verifies the plot function's ability to handle both a custom legend title and moving the legend outside the plot. The test is well-structured and ensures that both features work correctly in combination.

    For consistency with other test cases, consider adding an assertion to check the number of lines in the plot. This would ensure that the basic plotting functionality is not affected by the legend modifications. For example:

    assert len(result_ax.get_lines()) == 2  # Assuming two groups in the sample_dataframe

    This additional assertion would make the test even more comprehensive.


    Line range hint 244-276: LGTM: Valuable test case for datetime index warning.

    The new test case test_plot_with_datetime_index_warns is an excellent addition to the test suite. It effectively verifies that the appropriate warning is raised when plotting with a datetime index and no x_col specified. This test enhances the robustness of the plotting function by ensuring proper guidance is provided to users in specific scenarios.

    To improve clarity and make the test more self-contained, consider adding a comment or docstring explaining why this warning is important. For example:

    def test_plot_with_datetime_index_warns(sample_dataframe, mocker):
        """
        Test that a warning is raised when plotting with a datetime index and no x_col.
        This is important because time-based plots may require special handling,
        and users should be directed to the appropriate module.
        """
        # ... (rest of the test case)

    This additional context would make the purpose and importance of the test more evident to other developers.

    pyretailscience/style/graph_utils.py (2)

    14-17: LGTM: New _hatches_gen function is well-implemented.

    The _hatches_gen function is correctly implemented and efficiently uses itertools.cycle to create a generator of hatch patterns. The return type annotation is accurate.

    Consider adding a brief explanation of the hatch patterns in the docstring:

    def _hatches_gen() -> Generator[str, None, None]:
        """Returns a generator that cycles through the hatch patterns.
    
        Hatch patterns: '/', '\', '|', '-', '+', 'x', 'o', 'O', '.', '*'
        """
        _hatches = ["/", "\\", "|", "-", "+", "x", "o", "O", ".", "*"]
        return cycle(_hatches)

    70-87: LGTM: New _add_plot_legend function improves legend handling.

    The _add_plot_legend function effectively centralizes legend handling logic, aligning with the PR objective. It correctly manages different scenarios for legend placement and titling.

    For improved clarity, consider simplifying the condition for adding a legend:

    def _add_plot_legend(ax: Axes, legend_title: str | None, move_legend_outside: bool) -> Axes:
        """Add a legend to a Matplotlib graph."""
        if ax.get_legend() is not None or legend_title or move_legend_outside:
            legend = ax.legend(
                bbox_to_anchor=(1.05, 1), loc="upper left", frameon=False
            ) if move_legend_outside else ax.legend(frameon=False)
            
            if legend_title and legend:
                legend.set_title(legend_title)
        return ax

    This change removes the has_legend variable and simplifies the condition, making the code more concise.

    docs/analysis_modules.md (3)

    53-98: Great addition of the Histogram Plot section!

    The new section on Histogram Plot is well-structured and informative. It provides a clear explanation of the purpose and functionality of histograms in data visualization. The example code effectively demonstrates how to use the new histogram plot feature.

    Here are a few minor suggestions for improvement:

    1. Consider adding a blank line before the "### Histogram Plot" heading (line 53) for consistency with other sections.
    2. The explanation paragraph (lines 58-66) is quite long. Consider breaking it into smaller paragraphs for better readability.
    3. In the example code, consider adding a comment explaining the purpose of the np.concatenate and the creation of two normal distributions (lines 80-83) to help users understand the data generation process.
    🧰 Tools
    🪛 Markdownlint

    58-58: Expected: 120; Actual: 412
    Line length

    (MD013, line-length)


    66-66: Expected: 120; Actual: 164
    Line length

    (MD013, line-length)


    53-53: Expected: 1; Actual: 0; Below
    Headings should be surrounded by blank lines

    (MD022, blanks-around-headings)


    Line range hint 284-341: Excellent expansion of the Product Association Rules section!

    The expanded content in the Product Association Rules section greatly enhances the documentation. It provides a comprehensive explanation of product association rules, their applications in retail analytics, and key metrics used to quantify associations.

    The example code snippet effectively demonstrates how to use the ProductAssociation class. However, to further improve this section, consider adding a brief explanation of the output table (lines 336-341) to help users interpret the results.

    Would you like me to draft a short explanation for the output table?

    🧰 Tools
    🪛 Markdownlint

    58-58: Expected: 120; Actual: 412
    Line length

    (MD013, line-length)


    66-66: Expected: 120; Actual: 164
    Line length

    (MD013, line-length)


    53-53: Expected: 1; Actual: 0; Below
    Headings should be surrounded by blank lines

    (MD022, blanks-around-headings)


    Line range hint 1-598: Address placeholder sections and minor formatting issues

    1. Placeholder sections: Several sections (e.g., Cross Shop, Gain Loss, Revenue Tree, etc.) contain placeholder text ("PASTE TEXT HERE" and "PASTE CODE HERE"). These sections should be completed with actual content or removed if not ready for this PR.

    2. Formatting:

      • Consider breaking long lines (e.g., lines 58-66) into shorter paragraphs for better readability.
      • Add a blank line before the "### Histogram Plot" heading (line 53) for consistency with other sections.
      • Review and adjust line lengths exceeding 120 characters, particularly in the explanation paragraphs.
    3. Consistency: Ensure all sections follow the same structure: explanation, image (if applicable), and code example.

    Would you like assistance in drafting content for any of the placeholder sections?

    🧰 Tools
    🪛 Markdownlint

    58-58: Expected: 120; Actual: 412
    Line length

    (MD013, line-length)


    66-66: Expected: 120; Actual: 164
    Line length

    (MD013, line-length)


    53-53: Expected: 1; Actual: 0; Below
    Headings should be surrounded by blank lines

    (MD022, blanks-around-headings)

    📜 Review details

    Configuration used: CodeRabbit UI
    Review profile: CHILL

    📥 Commits

    Files that changed from the base of the PR and between df4b15b and 9cabc89.

    ⛔ Files ignored due to path filters (2)
    • docs/assets/images/analysis_modules/plots/histogram_plot.svg is excluded by !**/*.svg
    • docs/assets/images/analysis_modules/plots/line_plot.svg is excluded by !**/*.svg
    📒 Files selected for processing (8)
    • docs/analysis_modules.md (1 hunks)
    • pyretailscience/plots/histogram.py (1 hunks)
    • pyretailscience/plots/line.py (3 hunks)
    • pyretailscience/style/graph_utils.py (6 hunks)
    • pyretailscience/style/tailwind.py (2 hunks)
    • tests/plots/test_histogram.py (1 hunks)
    • tests/plots/test_line.py (2 hunks)
    • tests/test_standard_graphs.py (2 hunks)
    🚧 Files skipped from review as they are similar to previous changes (1)
    • pyretailscience/plots/line.py
    🧰 Additional context used
    🪛 Markdownlint
    docs/analysis_modules.md

    58-58: Expected: 120; Actual: 412
    Line length

    (MD013, line-length)


    66-66: Expected: 120; Actual: 164
    Line length

    (MD013, line-length)


    53-53: Expected: 1; Actual: 0; Below
    Headings should be surrounded by blank lines

    (MD022, blanks-around-headings)

    🪛 Ruff
    tests/plots/test_histogram.py

    15-15: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    24-24: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    30-30: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    40-40: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    54-54: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)

    🔇 Additional comments (22)
    tests/plots/test_line.py (3)

    4-4: LGTM: Import statement addition is appropriate.

    The addition of from iterators import cycle is necessary for the changes made in the _mock_get_base_cmap fixture. This import allows for the creation of an infinite iterator for color cycling in the tests.


    Line range hint 186-210: LGTM: Well-structured test case for legend title functionality.

    The new test case test_plot_with_legend_title is a valuable addition to the test suite. It effectively verifies the plot function's ability to handle a custom legend title. The test is well-structured, following the Arrange-Act-Assert pattern, and checks that the standard_graph_styles function is called with the correct parameters, including the provided legend title.

    This test enhances the overall coverage of the plotting functionality and helps ensure that the legend title feature works as expected.


    Line range hint 1-276: Overall assessment: Well-implemented changes with improved test coverage.

    The modifications to tests/plots/test_line.py significantly enhance the test suite for the plotting functionality. Key improvements include:

    1. More flexible color mocking using a cycling color generator.
    2. New test cases covering legend title handling, legend positioning, and datetime index warnings.
    3. Improved coverage of edge cases and combined feature usage.

    These changes contribute to a more robust and comprehensive test suite, which will help maintain the quality and reliability of the plotting module. The suggestions provided are minor and aimed at further improving clarity and consistency.

    Great job on these enhancements!

    pyretailscience/style/graph_utils.py (3)

    4-5: LGTM: Import statement addition is correct.

    The addition of from collections.abc import Generator is appropriate for type hinting purposes, likely used in the new _hatches_gen function. This follows Python best practices for type annotations.


    Line range hint 89-148: LGTM: Updated standard_graph_styles function improves code organization.

    The changes to standard_graph_styles effectively utilize the new _add_plot_legend function, centralizing legend handling logic. This update aligns with the PR objective of improving legend handling while maintaining backward compatibility.


    Line range hint 1-265: Overall assessment: Excellent additions and improvements to graph styling capabilities.

    The changes in this file successfully implement the PR objectives, introducing new functions for hatch pattern generation and application, improving legend handling, and enhancing overall graph styling capabilities. The code is well-structured and follows good practices, with only minor suggestions for improvements.

    Key points:

    1. New _hatches_gen and apply_hatches functions add valuable styling options.
    2. Improved legend handling with the new _add_plot_legend function.
    3. Updated standard_graph_styles function for better code organization.

    The suggested minor improvements (docstring addition, legend condition simplification, and import relocation) will further enhance the code's clarity and maintainability.

    tests/test_standard_graphs.py (7)

    132-142: LGTM: Well-structured test for 3 colors scenario

    The test effectively validates the get_base_cmap function for the case of exactly 3 colors, which is a crucial boundary condition. The use of islice to extract the first three colors from the generator is appropriate and efficient.


    145-155: LGTM: Comprehensive test for 2 colors scenario

    This test effectively covers the case of 2 colors, which is another important scenario for the get_base_cmap function. The implementation is consistent with the previous test, maintaining good code quality.


    158-168: LGTM: Edge case test for single color scenario

    This test effectively covers the edge case of a single color for the get_base_cmap function. The implementation is consistent with the previous tests and properly validates the function's behavior for this minimal input scenario.


    171-186: LGTM: Thorough test for more than three colors

    This test effectively validates the get_base_cmap function's behavior when requesting more than three colors. It ensures that the function correctly cycles through different color shades as expected. The implementation is consistent with previous tests and covers an important scenario beyond the basic use case.


    189-209: LGTM: Comprehensive test for color cycling behavior

    This test effectively validates the get_base_cmap function's behavior when requesting more colors than are distinctly available. It ensures that the function correctly cycles through the available colors and shades as expected. The implementation is thorough and covers an important edge case for the function's behavior.


    212-229: LGTM: Excellent test for color cycling consistency

    This test effectively validates the consistent cycling behavior of the get_base_cmap function. By requesting more colors than initially specified, it ensures that the function correctly repeats the color pattern as expected. This is crucial for understanding and verifying the function's behavior over extended use.


    132-229: Excellent addition of comprehensive tests for get_base_cmap

    The new test suite for the get_base_cmap function is well-designed and thorough. It covers a wide range of scenarios including:

    1. Exactly three colors
    2. Two colors
    3. Single color
    4. More than three colors
    5. More colors than available (testing cycling)
    6. Specific cycling behavior

    These tests significantly enhance the reliability and robustness of the get_base_cmap function by validating its behavior under various conditions. The consistent use of islice and clear assertions make the tests easy to understand and maintain.

    Great job on improving the test coverage!

    docs/analysis_modules.md (1)

    Line range hint 1-598: Overall, great improvements to the documentation!

    The additions and expansions in this file significantly enhance the documentation for the analysis modules. The new Histogram Plot section and the expanded Product Association Rules section provide valuable information and clear examples for users.

    To further improve the document:

    1. Complete or remove the placeholder sections.
    2. Address the minor formatting and consistency issues mentioned in previous comments.
    3. Consider adding brief explanations for the output of code examples where applicable.

    These changes will result in a more comprehensive and polished documentation for the analysis modules.

    🧰 Tools
    🪛 Markdownlint

    58-58: Expected: 120; Actual: 412
    Line length

    (MD013, line-length)


    66-66: Expected: 120; Actual: 164
    Line length

    (MD013, line-length)


    53-53: Expected: 1; Actual: 0; Below
    Headings should be surrounded by blank lines

    (MD022, blanks-around-headings)

    pyretailscience/style/tailwind.py (3)

    11-12: Necessary imports added

    The imports of Generator from collections.abc and cycle from itertools are appropriate for the new generator functions introduced.


    377-385: get_single_color_cmap function implemented correctly

    The get_single_color_cmap function provides a generator for green shades and is correctly implemented. The use of cycle ensures continuous looping over the specified shades.


    351-370: Ensure expanded color_order does not affect existing usage

    The color_order in get_base_cmap has been expanded to include more colors, enhancing the variety in the base colormap. Please verify that this change does not adversely impact any existing code or visualizations that rely on the previous color order or specific color sequencing.

    You can run the following script to identify where get_base_cmap is used in the codebase:

    pyretailscience/plots/histogram.py (4)

    1-40: Comprehensive and Clear Module Documentation

    The module docstring provides a comprehensive overview of the functionality, features, and limitations. It is well-structured and aids in understanding the purpose and usage of the module.


    91-93: Good handling of conflicting parameters

    The function now correctly raises a ValueError when value_col is a list and group_col is provided, preventing unexpected behavior.


    241-242: Flexible alpha parameter handling

    Great job allowing the alpha parameter to be overridden via kwargs. This enhances the flexibility of the plotting function.


    94-98: 🛠️ Refactor suggestion

    Consider validating that value_col columns exist in df

    Currently, there is no check to ensure that the columns specified in value_col actually exist in df. Adding a validation step can prevent errors downstream when non-existent columns are referenced.

    Apply this diff to add the validation:

     value_col = _prepare_value_col(df=df, value_col=value_col)
    
    +missing_cols = [col for col in value_col if col not in df.columns]
    +if missing_cols:
    +    raise ValueError(f"The following value columns are not present in the DataFrame: {missing_cols}")
    
     if isinstance(df, pd.Series):
         df = df.to_frame(name=value_col[0])

    Likely invalid or redundant comment.

    tests/plots/test_histogram.py (1)

    72-72: Previous comment about mocking DataFrame.plot still applies

    The issue regarding incorrect assertions on the mocked DataFrame.plot method is still present. Please refer to the previous review comment for details on how to address this.

    Also applies to: 98-98, 124-124, 150-150, 176-176, 202-202

    Comment on lines 168 to 178
    def apply_hatches(ax: Axes, num_segments: int) -> Axes:
    """Apply hatches to a plot. Useful for bars/histograms/area plots."""
    import numpy as np

    hatches = _hatches_gen()
    patch_groups = np.array_split(ax.patches, num_segments)
    for patch_group in patch_groups:
    hatch = next(hatches)
    for patch in patch_group:
    patch.set_hatch(hatch)
    return ax
    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    🛠️ Refactor suggestion

    LGTM: New apply_hatches function enhances graph styling capabilities.

    The apply_hatches function effectively uses the _hatches_gen generator to apply hatch patterns to plot elements, supporting multiple segments for grouped plots. This aligns well with the PR objective of enhancing graph styling capabilities.

    Consider moving the numpy import to the top of the file with other imports:

    import numpy as np
    # ... (other imports)
    
    def apply_hatches(ax: Axes, num_segments: int) -> Axes:
        """Apply hatches to a plot. Useful for bars/histograms/area plots."""
        hatches = _hatches_gen()
        patch_groups = np.array_split(ax.patches, num_segments)
        for patch_group in patch_groups:
            hatch = next(hatches)
            for patch in patch_group:
                patch.set_hatch(hatch)
        return ax

    This change follows the common practice of placing all imports at the beginning of the file, improving code organization and readability.

    Comment on lines +246 to +253
    return df[value_col].plot(
    kind="hist",
    ax=ax,
    legend=is_multi_histogram,
    color=colors,
    alpha=alpha,
    **kwargs,
    )
    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    🛠️ Refactor suggestion

    Enhance support for multiple value_col

    Currently, when group_col is not provided, and multiple value_col are given, all histograms are plotted on the same axes, which might overlap and cause readability issues.

    Consider allowing the option to plot multiple value_col histograms in separate subplots or adjust transparency and stacking to improve clarity.

    Comment on lines +256 to +266
    df_pivot = df.pivot(columns=group_col, values=value_col[0])

    # Plot all columns at once
    return df_pivot.plot(
    kind="hist",
    ax=ax,
    legend=is_multi_histogram,
    alpha=alpha,
    color=colors,
    **kwargs,
    )
    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    🛠️ Refactor suggestion

    Extend functionality to support multiple value_col with group_col

    The function currently raises an error when both value_col is a list and group_col is provided. Enhancing the function to handle multiple value columns with grouping would provide more flexibility.

    Consider updating the code to plot multiple value_col with group_col. This would involve reshaping the DataFrame appropriately and adjusting the plotting logic.

    range_upper: float | None = None,
    range_method: Literal["clip", "fillna"] = "clip",
    use_hatch: bool = False,
    **kwargs: dict[str, any],
    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    ⚠️ Potential issue

    Use Any from typing instead of any for type annotations

    In the type annotation for **kwargs, any should be replaced with Any from the typing module for correct type hinting.

    Apply this diff to fix the type annotation:

    -from typing import Literal
    +from typing import Any, Literal
    
    ...
    
     def plot(
         df: pd.DataFrame | pd.Series,
         ...
    -    **kwargs: dict[str, any],
    +    **kwargs: dict[str, Any],
     ) -> SubplotBase:

    Committable suggestion was skipped due to low confidence.



    # Fixture for mocking graph_utils functions
    @pytest.fixture()
    Copy link

    @coderabbitai coderabbitai bot Oct 1, 2024

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    ⚠️ Potential issue

    Simplify fixture decorators by removing parentheses

    When defining fixtures without parameters, the parentheses in @pytest.fixture() are unnecessary. Removing them can make the code cleaner and adhere to pytest best practices.

    Apply this diff to fix the issue:

    -@pytest.fixture()
    +@pytest.fixture

    This change should be applied to lines 15, 24, 30, 40, and 54.

    Also applies to: 24-24, 30-30, 40-40, 54-54

    🧰 Tools
    🪛 Ruff

    15-15: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)

    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    @Mrglglglglgl Tiny change here

    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    Seems like the humans are having a chat. I'll hop back into my burrow for now. If you need me again, just tag @coderabbitai in a new comment, and I'll come hopping out!

    Copy link
    Contributor

    qodo-merge-pro bot commented Oct 2, 2024

    PR-Agent was enabled for this repository. To continue using it, please link your git user with your CodiumAI identity here.

    CI Failure Feedback 🧐

    Action: Pre-Commit

    Failed stage: Run Pre-commit [❌]

    Failed test name: test_plot_single_histogram_no_legend

    Failure summary:

    The action failed due to multiple test failures:

  • The trim trailing whitespace pre-commit hook failed because it modified files to remove trailing
    whitespace.
  • Several tests in tests/plots/test_histogram.py failed due to an AssertionError. The tests expected
    the plot function to be called with specific parameters, but the actual call included an unexpected
    alpha parameter and specific color values.
  • Tests in tests/test_standard_graphs.py failed with a TypeError because the get_base_cmap function
    was called with an unexpected keyword argument num_colors.

  • Relevant error logs:
    1:  ##[group]Operating System
    2:  Ubuntu
    ...
    
    468:  [INFO] Installing environment for https://github.com/pre-commit/pre-commit-hooks.
    469:  [INFO] Once installed this environment will be reused.
    470:  [INFO] This may take a few minutes...
    471:  [INFO] Installing environment for https://github.com/kynan/nbstripout.
    472:  [INFO] Once installed this environment will be reused.
    473:  [INFO] This may take a few minutes...
    474:  ruff.....................................................................Passed
    475:  ruff-format..............................................................Passed
    476:  trim trailing whitespace.................................................Failed
    ...
    
    478:  - exit code: 1
    479:  - files were modified by this hook
    480:  Fixing docs/assets/images/analysis_modules/plots/line_plot.svg
    481:  Fixing docs/assets/images/analysis_modules/plots/histogram_plot.svg
    482:  fix end of files.........................................................Passed
    483:  fix python encoding pragma...............................................Passed
    484:  check yaml...............................................................Passed
    485:  debug statements (python)................................................Passed
    486:  pytest...................................................................Failed
    ...
    
    496:  tests/plots/test_line.py .........                                       [ 16%]
    497:  tests/test_cross_shop.py ........                                        [ 21%]
    498:  tests/test_gain_loss.py ......................                           [ 37%]
    499:  tests/test_options.py ......................                             [ 54%]
    500:  tests/test_product_association.py ...............                        [ 64%]
    501:  tests/test_range_planning.py ........                                    [ 70%]
    502:  tests/test_segmentation.py ......................                        [ 86%]
    503:  tests/test_standard_graphs.py .....FFFFFF.......                         [100%]
    504:  =================================== FAILURES ===================================
    505:  _____________________ test_plot_single_histogram_no_legend _____________________
    506:  self = <MagicMock name='plot' id='139905085297872'>, args = ()
    507:  kwargs = {'ax': <Axes: >, 'color': <ANY>, 'kind': 'hist', 'legend': False}
    508:  expected = call(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    509:  actual = call(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    510:  _error_message = <function NonCallableMock.assert_called_with.<locals>._error_message at 0x7f3e308de700>
    511:  cause = None
    512:  def assert_called_with(self, /, *args, **kwargs):
    513:  """assert that the last call was made with the specified arguments.
    514:  Raises an AssertionError if the args and keyword args passed in are
    515:  different to the last call to the mock."""
    516:  if self.call_args is None:
    517:  expected = self._format_mock_call_signature(args, kwargs)
    518:  actual = 'not called.'
    519:  error_message = ('expected call not found.\nExpected: %s\n  Actual: %s'
    520:  % (expected, actual))
    521:  raise AssertionError(error_message)
    522:  def _error_message():
    523:  msg = self._format_mock_failure_message(args, kwargs)
    524:  return msg
    525:  expected = self._call_matcher(_Call((args, kwargs), two=True))
    526:  actual = self._call_matcher(self.call_args)
    527:  if actual != expected:
    528:  cause = expected if isinstance(expected, Exception) else None
    529:  >           raise AssertionError(_error_message()) from cause
    530:  E           AssertionError: expected call not found.
    531:  E           Expected: plot(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    532:  E             Actual: plot(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    533:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:939: AssertionError
    ...
    
    537:  def assert_called_once_with(self, /, *args, **kwargs):
    538:  """assert that the mock was called exactly once and that that call was
    539:  with the specified arguments."""
    540:  if not self.call_count == 1:
    541:  msg = ("Expected '%s' to be called once. Called %s times.%s"
    542:  % (self._mock_name or 'mock',
    543:  self.call_count,
    544:  self._calls_repr()))
    545:  raise AssertionError(msg)
    546:  >       return self.assert_called_with(*args, **kwargs)
    547:  E       AssertionError: expected call not found.
    ...
    
    565:  E         ?              ^^^^^^
    566:  E         +     'color': [
    567:  E         ?              ^
    568:  E         +         '#22c55e',
    569:  E         +     ],
    570:  E               'kind': 'hist',
    571:  E               'legend': False,
    572:  E           }
    573:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:951: AssertionError
    ...
    
    583:  def test_plot_single_histogram_no_legend(sample_dataframe, mocker):
    584:  """Test the plot function with a single histogram and no legend."""
    585:  # Create the plot axis using plt.subplots()
    586:  _, ax = plt.subplots()
    587:  # Call the plot function
    588:  resulted_ax = plot(df=sample_dataframe, value_col="quantity", ax=ax)
    589:  # Verify that df.plot was called with correct parameters
    590:  >       pd.DataFrame.plot.assert_called_once_with(kind="hist", ax=ax, legend=False, color=mocker.ANY)
    591:  E       AssertionError: expected call not found.
    ...
    
    609:  E         ?              ^^^^^^
    610:  E         +     'color': [
    611:  E         ?              ^
    612:  E         +         '#22c55e',
    613:  E         +     ],
    614:  E               'kind': 'hist',
    615:  E               'legend': False,
    616:  E           }
    617:  tests/plots/test_histogram.py:72: AssertionError
    618:  _____ test_plot_multiple_histograms_with_legend_when_group_col_is_not_nan ______
    619:  self = <MagicMock name='plot' id='139905078943824'>, args = ()
    620:  kwargs = {'ax': <Axes: >, 'color': <ANY>, 'kind': 'hist', 'legend': True}
    621:  expected = call(kind='hist', ax=<Axes: >, legend=True, color=<ANY>)
    622:  actual = call(kind='hist', ax=<Axes: >, legend=True, alpha=0.5, color=['#22c55e', '#3b82f6'])
    623:  _error_message = <function NonCallableMock.assert_called_with.<locals>._error_message at 0x7f3e2cfe8ea0>
    624:  cause = None
    625:  def assert_called_with(self, /, *args, **kwargs):
    626:  """assert that the last call was made with the specified arguments.
    627:  Raises an AssertionError if the args and keyword args passed in are
    628:  different to the last call to the mock."""
    629:  if self.call_args is None:
    630:  expected = self._format_mock_call_signature(args, kwargs)
    631:  actual = 'not called.'
    632:  error_message = ('expected call not found.\nExpected: %s\n  Actual: %s'
    633:  % (expected, actual))
    634:  raise AssertionError(error_message)
    635:  def _error_message():
    636:  msg = self._format_mock_failure_message(args, kwargs)
    637:  return msg
    638:  expected = self._call_matcher(_Call((args, kwargs), two=True))
    639:  actual = self._call_matcher(self.call_args)
    640:  if actual != expected:
    641:  cause = expected if isinstance(expected, Exception) else None
    642:  >           raise AssertionError(_error_message()) from cause
    643:  E           AssertionError: expected call not found.
    644:  E           Expected: plot(kind='hist', ax=<Axes: >, legend=True, color=<ANY>)
    645:  E             Actual: plot(kind='hist', ax=<Axes: >, legend=True, alpha=0.5, color=['#22c55e', '#3b82f6'])
    646:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:939: AssertionError
    ...
    
    650:  def assert_called_once_with(self, /, *args, **kwargs):
    651:  """assert that the mock was called exactly once and that that call was
    652:  with the specified arguments."""
    653:  if not self.call_count == 1:
    654:  msg = ("Expected '%s' to be called once. Called %s times.%s"
    655:  % (self._mock_name or 'mock',
    656:  self.call_count,
    657:  self._calls_repr()))
    658:  raise AssertionError(msg)
    659:  >       return self.assert_called_with(*args, **kwargs)
    660:  E       AssertionError: expected call not found.
    ...
    
    679:  E         +     'color': [
    680:  E         ?              ^
    681:  E         +         '#22c55e',
    682:  E         +         '#3b82f6',
    683:  E         +     ],
    684:  E               'kind': 'hist',
    685:  E               'legend': True,
    686:  E           }
    687:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:951: AssertionError
    ...
    
    697:  def test_plot_multiple_histograms_with_legend_when_group_col_is_not_nan(sample_dataframe, mocker):
    698:  """Test the plot function with multiple histograms and a legend when group_col is not None."""
    699:  # Create the plot axis using plt.subplots()
    700:  _, ax = plt.subplots()
    701:  # Call the plot function with grouping
    702:  resulted_ax = plot(df=sample_dataframe, value_col="quantity", group_col="category", ax=ax)
    703:  # Verify that df.plot was called for multiple histograms with correct parameters
    704:  >       pd.DataFrame.plot.assert_called_once_with(kind="hist", ax=ax, legend=True, color=mocker.ANY)
    705:  E       AssertionError: expected call not found.
    ...
    
    724:  E         +     'color': [
    725:  E         ?              ^
    726:  E         +         '#22c55e',
    727:  E         +         '#3b82f6',
    728:  E         +     ],
    729:  E               'kind': 'hist',
    730:  E               'legend': True,
    731:  E           }
    732:  tests/plots/test_histogram.py:98: AssertionError
    733:  ______ test_plot_multiple_histograms_with_legend_when_value_col_is_a_list ______
    734:  self = <MagicMock name='plot' id='139905388274064'>, args = ()
    735:  kwargs = {'ax': <Axes: >, 'color': <ANY>, 'kind': 'hist', 'legend': True}
    736:  expected = call(kind='hist', ax=<Axes: >, legend=True, color=<ANY>)
    737:  actual = call(kind='hist', ax=<Axes: >, legend=True, color=['#22c55e', '#3b82f6'], alpha=0.5)
    738:  _error_message = <function NonCallableMock.assert_called_with.<locals>._error_message at 0x7f3e2cf87380>
    739:  cause = None
    740:  def assert_called_with(self, /, *args, **kwargs):
    741:  """assert that the last call was made with the specified arguments.
    742:  Raises an AssertionError if the args and keyword args passed in are
    743:  different to the last call to the mock."""
    744:  if self.call_args is None:
    745:  expected = self._format_mock_call_signature(args, kwargs)
    746:  actual = 'not called.'
    747:  error_message = ('expected call not found.\nExpected: %s\n  Actual: %s'
    748:  % (expected, actual))
    749:  raise AssertionError(error_message)
    750:  def _error_message():
    751:  msg = self._format_mock_failure_message(args, kwargs)
    752:  return msg
    753:  expected = self._call_matcher(_Call((args, kwargs), two=True))
    754:  actual = self._call_matcher(self.call_args)
    755:  if actual != expected:
    756:  cause = expected if isinstance(expected, Exception) else None
    757:  >           raise AssertionError(_error_message()) from cause
    758:  E           AssertionError: expected call not found.
    759:  E           Expected: plot(kind='hist', ax=<Axes: >, legend=True, color=<ANY>)
    760:  E             Actual: plot(kind='hist', ax=<Axes: >, legend=True, color=['#22c55e', '#3b82f6'], alpha=0.5)
    761:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:939: AssertionError
    ...
    
    765:  def assert_called_once_with(self, /, *args, **kwargs):
    766:  """assert that the mock was called exactly once and that that call was
    767:  with the specified arguments."""
    768:  if not self.call_count == 1:
    769:  msg = ("Expected '%s' to be called once. Called %s times.%s"
    770:  % (self._mock_name or 'mock',
    771:  self.call_count,
    772:  self._calls_repr()))
    773:  raise AssertionError(msg)
    774:  >       return self.assert_called_with(*args, **kwargs)
    775:  E       AssertionError: expected call not found.
    ...
    
    794:  E         +     'color': [
    795:  E         ?              ^
    796:  E         +         '#22c55e',
    797:  E         +         '#3b82f6',
    798:  E         +     ],
    799:  E               'kind': 'hist',
    800:  E               'legend': True,
    801:  E           }
    802:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:951: AssertionError
    ...
    
    812:  def test_plot_multiple_histograms_with_legend_when_value_col_is_a_list(sample_dataframe, mocker):
    813:  """Test the plot function with multiple histograms and a legend when value_col is a list."""
    814:  # Create the plot axis using plt.subplots()
    815:  _, ax = plt.subplots()
    816:  # Call the plot function with grouping
    817:  resulted_ax = plot(df=sample_dataframe, value_col=["quantity", "category"], ax=ax)
    818:  # Verify that df.plot was called for multiple histograms with correct parameters
    819:  >       pd.DataFrame.plot.assert_called_once_with(kind="hist", ax=ax, legend=True, color=mocker.ANY)
    820:  E       AssertionError: expected call not found.
    ...
    
    839:  E         +     'color': [
    840:  E         ?              ^
    841:  E         +         '#22c55e',
    842:  E         +         '#3b82f6',
    843:  E         +     ],
    844:  E               'kind': 'hist',
    845:  E               'legend': True,
    846:  E           }
    847:  tests/plots/test_histogram.py:124: AssertionError
    848:  __________________________ test_plot_with_source_text __________________________
    849:  self = <MagicMock name='plot' id='139905019292432'>, args = ()
    850:  kwargs = {'ax': <Axes: >, 'color': <ANY>, 'kind': 'hist', 'legend': False}
    851:  expected = call(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    852:  actual = call(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    853:  _error_message = <function NonCallableMock.assert_called_with.<locals>._error_message at 0x7f3e2987c720>
    854:  cause = None
    855:  def assert_called_with(self, /, *args, **kwargs):
    856:  """assert that the last call was made with the specified arguments.
    857:  Raises an AssertionError if the args and keyword args passed in are
    858:  different to the last call to the mock."""
    859:  if self.call_args is None:
    860:  expected = self._format_mock_call_signature(args, kwargs)
    861:  actual = 'not called.'
    862:  error_message = ('expected call not found.\nExpected: %s\n  Actual: %s'
    863:  % (expected, actual))
    864:  raise AssertionError(error_message)
    865:  def _error_message():
    866:  msg = self._format_mock_failure_message(args, kwargs)
    867:  return msg
    868:  expected = self._call_matcher(_Call((args, kwargs), two=True))
    869:  actual = self._call_matcher(self.call_args)
    870:  if actual != expected:
    871:  cause = expected if isinstance(expected, Exception) else None
    872:  >           raise AssertionError(_error_message()) from cause
    873:  E           AssertionError: expected call not found.
    874:  E           Expected: plot(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    875:  E             Actual: plot(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    876:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:939: AssertionError
    ...
    
    880:  def assert_called_once_with(self, /, *args, **kwargs):
    881:  """assert that the mock was called exactly once and that that call was
    882:  with the specified arguments."""
    883:  if not self.call_count == 1:
    884:  msg = ("Expected '%s' to be called once. Called %s times.%s"
    885:  % (self._mock_name or 'mock',
    886:  self.call_count,
    887:  self._calls_repr()))
    888:  raise AssertionError(msg)
    889:  >       return self.assert_called_with(*args, **kwargs)
    890:  E       AssertionError: expected call not found.
    ...
    
    908:  E         ?              ^^^^^^
    909:  E         +     'color': [
    910:  E         ?              ^
    911:  E         +         '#22c55e',
    912:  E         +     ],
    913:  E               'kind': 'hist',
    914:  E               'legend': False,
    915:  E           }
    916:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:951: AssertionError
    ...
    
    926:  def test_plot_with_source_text(sample_dataframe, mocker):
    927:  """Test the plot function with source text."""
    928:  # Create the plot axis using plt.subplots()
    929:  _, ax = plt.subplots()
    930:  # Call the plot function with source text
    931:  resulted_ax = plot(df=sample_dataframe, value_col="quantity", ax=ax, source_text="Source: Test Data")
    932:  # Verify that df.plot was called with correct parameters
    933:  >       pd.DataFrame.plot.assert_called_once_with(kind="hist", ax=ax, legend=False, color=mocker.ANY)
    934:  E       AssertionError: expected call not found.
    ...
    
    952:  E         ?              ^^^^^^
    953:  E         +     'color': [
    954:  E         ?              ^
    955:  E         +         '#22c55e',
    956:  E         +     ],
    957:  E               'kind': 'hist',
    958:  E               'legend': False,
    959:  E           }
    960:  tests/plots/test_histogram.py:150: AssertionError
    961:  ___________________________ test_plot_custom_labels ____________________________
    962:  self = <MagicMock name='plot' id='139905019237392'>, args = ()
    963:  kwargs = {'ax': <Axes: >, 'color': <ANY>, 'kind': 'hist', 'legend': False}
    964:  expected = call(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    965:  actual = call(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    966:  _error_message = <function NonCallableMock.assert_called_with.<locals>._error_message at 0x7f3e298600e0>
    967:  cause = None
    968:  def assert_called_with(self, /, *args, **kwargs):
    969:  """assert that the last call was made with the specified arguments.
    970:  Raises an AssertionError if the args and keyword args passed in are
    971:  different to the last call to the mock."""
    972:  if self.call_args is None:
    973:  expected = self._format_mock_call_signature(args, kwargs)
    974:  actual = 'not called.'
    975:  error_message = ('expected call not found.\nExpected: %s\n  Actual: %s'
    976:  % (expected, actual))
    977:  raise AssertionError(error_message)
    978:  def _error_message():
    979:  msg = self._format_mock_failure_message(args, kwargs)
    980:  return msg
    981:  expected = self._call_matcher(_Call((args, kwargs), two=True))
    982:  actual = self._call_matcher(self.call_args)
    983:  if actual != expected:
    984:  cause = expected if isinstance(expected, Exception) else None
    985:  >           raise AssertionError(_error_message()) from cause
    986:  E           AssertionError: expected call not found.
    987:  E           Expected: plot(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    988:  E             Actual: plot(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    989:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:939: AssertionError
    ...
    
    993:  def assert_called_once_with(self, /, *args, **kwargs):
    994:  """assert that the mock was called exactly once and that that call was
    995:  with the specified arguments."""
    996:  if not self.call_count == 1:
    997:  msg = ("Expected '%s' to be called once. Called %s times.%s"
    998:  % (self._mock_name or 'mock',
    999:  self.call_count,
    1000:  self._calls_repr()))
    1001:  raise AssertionError(msg)
    1002:  >       return self.assert_called_with(*args, **kwargs)
    1003:  E       AssertionError: expected call not found.
    ...
    
    1021:  E         ?              ^^^^^^
    1022:  E         +     'color': [
    1023:  E         ?              ^
    1024:  E         +         '#22c55e',
    1025:  E         +     ],
    1026:  E               'kind': 'hist',
    1027:  E               'legend': False,
    1028:  E           }
    1029:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:951: AssertionError
    ...
    
    1039:  def test_plot_custom_labels(sample_dataframe, mocker):
    1040:  """Test the plot function with custom x and y labels."""
    1041:  # Create the plot axis using plt.subplots()
    1042:  _, ax = plt.subplots()
    1043:  # Call the plot function with custom labels for x and y axes
    1044:  resulted_ax = plot(df=sample_dataframe, value_col="quantity", ax=ax, x_label="Custom X", y_label="Custom Y")
    1045:  # Verify that df.plot was called with correct parameters
    1046:  >       pd.DataFrame.plot.assert_called_once_with(kind="hist", ax=ax, legend=False, color=mocker.ANY)
    1047:  E       AssertionError: expected call not found.
    ...
    
    1065:  E         ?              ^^^^^^
    1066:  E         +     'color': [
    1067:  E         ?              ^
    1068:  E         +         '#22c55e',
    1069:  E         +     ],
    1070:  E               'kind': 'hist',
    1071:  E               'legend': False,
    1072:  E           }
    1073:  tests/plots/test_histogram.py:176: AssertionError
    1074:  ____________________________ test_plot_with_series _____________________________
    1075:  self = <MagicMock name='plot' id='139904961676496'>, args = ()
    1076:  kwargs = {'ax': <Axes: >, 'color': <ANY>, 'kind': 'hist', 'legend': False}
    1077:  expected = call(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    1078:  actual = call(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    1079:  _error_message = <function NonCallableMock.assert_called_with.<locals>._error_message at 0x7f3e2983d620>
    1080:  cause = None
    1081:  def assert_called_with(self, /, *args, **kwargs):
    1082:  """assert that the last call was made with the specified arguments.
    1083:  Raises an AssertionError if the args and keyword args passed in are
    1084:  different to the last call to the mock."""
    1085:  if self.call_args is None:
    1086:  expected = self._format_mock_call_signature(args, kwargs)
    1087:  actual = 'not called.'
    1088:  error_message = ('expected call not found.\nExpected: %s\n  Actual: %s'
    1089:  % (expected, actual))
    1090:  raise AssertionError(error_message)
    1091:  def _error_message():
    1092:  msg = self._format_mock_failure_message(args, kwargs)
    1093:  return msg
    1094:  expected = self._call_matcher(_Call((args, kwargs), two=True))
    1095:  actual = self._call_matcher(self.call_args)
    1096:  if actual != expected:
    1097:  cause = expected if isinstance(expected, Exception) else None
    1098:  >           raise AssertionError(_error_message()) from cause
    1099:  E           AssertionError: expected call not found.
    1100:  E           Expected: plot(kind='hist', ax=<Axes: >, legend=False, color=<ANY>)
    1101:  E             Actual: plot(kind='hist', ax=<Axes: >, legend=False, color=['#22c55e'], alpha=0.5)
    1102:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:939: AssertionError
    ...
    
    1106:  def assert_called_once_with(self, /, *args, **kwargs):
    1107:  """assert that the mock was called exactly once and that that call was
    1108:  with the specified arguments."""
    1109:  if not self.call_count == 1:
    1110:  msg = ("Expected '%s' to be called once. Called %s times.%s"
    1111:  % (self._mock_name or 'mock',
    1112:  self.call_count,
    1113:  self._calls_repr()))
    1114:  raise AssertionError(msg)
    1115:  >       return self.assert_called_with(*args, **kwargs)
    1116:  E       AssertionError: expected call not found.
    ...
    
    1134:  E         ?              ^^^^^^
    1135:  E         +     'color': [
    1136:  E         ?              ^
    1137:  E         +         '#22c55e',
    1138:  E         +     ],
    1139:  E               'kind': 'hist',
    1140:  E               'legend': False,
    1141:  E           }
    1142:  /opt/hostedtoolcache/Python/3.11.10/x64/lib/python3.11/unittest/mock.py:951: AssertionError
    ...
    
    1152:  def test_plot_with_series(sample_series, mocker):
    1153:  """Test the plot function with a pandas series."""
    1154:  # Create the plot axis using plt.subplots()
    1155:  _, ax = plt.subplots()
    1156:  # Call the plot function with a series (instead of dataframe and value_col)
    1157:  resulted_ax = plot(df=sample_series, ax=ax)
    1158:  # Verify that pd.Series.plot was called with correct parameters
    1159:  >       pd.DataFrame.plot.assert_called_once_with(kind="hist", ax=ax, legend=False, color=mocker.ANY)
    1160:  E       AssertionError: expected call not found.
    ...
    
    1178:  E         ?              ^^^^^^
    1179:  E         +     'color': [
    1180:  E         ?              ^
    1181:  E         +         '#22c55e',
    1182:  E         +     ],
    1183:  E               'kind': 'hist',
    1184:  E               'legend': False,
    1185:  E           }
    1186:  tests/plots/test_histogram.py:202: AssertionError
    1187:  ___________________ test_get_base_cmap_three_or_fewer_colors ___________________
    1188:  def test_get_base_cmap_three_or_fewer_colors():
    1189:  """Test the get_base_cmap function with three or fewer colors."""
    1190:  # Test with 3 colors (all green shades)
    1191:  >       gen = get_base_cmap(num_colors=3)
    1192:  E       TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1193:  tests/test_standard_graphs.py:135: TypeError
    1194:  ________________________ test_get_base_cmap_two_colors _________________________
    1195:  def test_get_base_cmap_two_colors():
    1196:  """Test the get_base_cmap function with two colors."""
    1197:  # Test with 2 colors (only green 500 and green 300)
    1198:  >       gen = get_base_cmap(num_colors=2)
    1199:  E       TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1200:  tests/test_standard_graphs.py:148: TypeError
    1201:  _________________________ test_get_base_cmap_one_color _________________________
    1202:  def test_get_base_cmap_one_color():
    1203:  """Test the get_base_cmap function with one color."""
    1204:  # Test with 1 color (only green 500)
    1205:  >       gen = get_base_cmap(num_colors=1)
    1206:  E       TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1207:  tests/test_standard_graphs.py:161: TypeError
    1208:  __________________ test_get_base_cmap_more_than_three_colors ___________________
    1209:  def test_get_base_cmap_more_than_three_colors():
    1210:  """Test the get_base_cmap function with more than three colors."""
    1211:  # Test with 4 colors (mix of all colors)
    1212:  >       gen = get_base_cmap(num_colors=4)
    1213:  E       TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1214:  tests/test_standard_graphs.py:174: TypeError
    1215:  ________________ test_get_base_cmap_more_than_available_colors _________________
    1216:  def test_get_base_cmap_more_than_available_colors():
    1217:  """Test the get_base_cmap function with more colors than available."""
    1218:  # Test with more colors than available, ensure cycling occurs
    1219:  >       gen = get_base_cmap(num_colors=9)
    1220:  E       TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1221:  tests/test_standard_graphs.py:192: TypeError
    1222:  ______________________ test_get_base_cmap_cycle_behavior _______________________
    1223:  def test_get_base_cmap_cycle_behavior():
    1224:  """Test the cycling behavior of the get_base_cmap function."""
    1225:  # Test with cycling colors
    1226:  >       gen = get_base_cmap(num_colors=3)
    1227:  E       TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1228:  tests/test_standard_graphs.py:215: TypeError
    ...
    
    1270:  pyretailscience/standard_graphs.py         130     75     70      3    38%   67-119, 245-320, 376->379, 418-426, 436
    1271:  pyretailscience/style/graph_utils.py        90     17     28      8    74%   21-22, 68-69, 85-91, 130, 137->145, 145->153, 186-192, 207, 222->228, 227
    1272:  pyretailscience/style/tailwind.py           68      2     10      1    96%   316-317
    1273:  ------------------------------------------------------------------------------------
    1274:  TOTAL                                     1041    430    438     28    57%
    1275:  3 files skipped due to complete coverage.
    1276:  Coverage XML written to file coverage.xml
    1277:  =========================== short test summary info ============================
    1278:  FAILED tests/plots/test_histogram.py::test_plot_single_histogram_no_legend - AssertionError: expected call not found.
    ...
    
    1292:  ?              ^^^^^^
    1293:  +     'color': [
    1294:  ?              ^
    1295:  +         '#22c55e',
    1296:  +     ],
    1297:  'kind': 'hist',
    1298:  'legend': False,
    1299:  }
    1300:  FAILED tests/plots/test_histogram.py::test_plot_multiple_histograms_with_legend_when_group_col_is_not_nan - AssertionError: expected call not found.
    ...
    
    1315:  +     'color': [
    1316:  ?              ^
    1317:  +         '#22c55e',
    1318:  +         '#3b82f6',
    1319:  +     ],
    1320:  'kind': 'hist',
    1321:  'legend': True,
    1322:  }
    1323:  FAILED tests/plots/test_histogram.py::test_plot_multiple_histograms_with_legend_when_value_col_is_a_list - AssertionError: expected call not found.
    ...
    
    1338:  +     'color': [
    1339:  ?              ^
    1340:  +         '#22c55e',
    1341:  +         '#3b82f6',
    1342:  +     ],
    1343:  'kind': 'hist',
    1344:  'legend': True,
    1345:  }
    1346:  FAILED tests/plots/test_histogram.py::test_plot_with_source_text - AssertionError: expected call not found.
    ...
    
    1360:  ?              ^^^^^^
    1361:  +     'color': [
    1362:  ?              ^
    1363:  +         '#22c55e',
    1364:  +     ],
    1365:  'kind': 'hist',
    1366:  'legend': False,
    1367:  }
    1368:  FAILED tests/plots/test_histogram.py::test_plot_custom_labels - AssertionError: expected call not found.
    ...
    
    1382:  ?              ^^^^^^
    1383:  +     'color': [
    1384:  ?              ^
    1385:  +         '#22c55e',
    1386:  +     ],
    1387:  'kind': 'hist',
    1388:  'legend': False,
    1389:  }
    1390:  FAILED tests/plots/test_histogram.py::test_plot_with_series - AssertionError: expected call not found.
    ...
    
    1404:  ?              ^^^^^^
    1405:  +     'color': [
    1406:  ?              ^
    1407:  +         '#22c55e',
    1408:  +     ],
    1409:  'kind': 'hist',
    1410:  'legend': False,
    1411:  }
    1412:  FAILED tests/test_standard_graphs.py::test_get_base_cmap_three_or_fewer_colors - TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1413:  FAILED tests/test_standard_graphs.py::test_get_base_cmap_two_colors - TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1414:  FAILED tests/test_standard_graphs.py::test_get_base_cmap_one_color - TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1415:  FAILED tests/test_standard_graphs.py::test_get_base_cmap_more_than_three_colors - TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1416:  FAILED tests/test_standard_graphs.py::test_get_base_cmap_more_than_available_colors - TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1417:  FAILED tests/test_standard_graphs.py::test_get_base_cmap_cycle_behavior - TypeError: get_base_cmap() got an unexpected keyword argument 'num_colors'
    1418:  ================= 12 failed, 125 passed, 11 warnings in 4.55s ==================
    1419:  nbstripout...............................................................Passed
    1420:  ##[error]Process completed with exit code 1.
    

    ✨ CI feedback usage guide:

    The CI feedback tool (/checks) automatically triggers when a PR has a failed check.
    The tool analyzes the failed checks and provides several feedbacks:

    • Failed stage
    • Failed test name
    • Failure summary
    • Relevant error logs

    In addition to being automatically triggered, the tool can also be invoked manually by commenting on a PR:

    /checks "https://github.com/{repo_name}/actions/runs/{run_number}/job/{job_number}"
    

    where {repo_name} is the name of the repository, {run_number} is the run number of the failed check, and {job_number} is the job number of the failed check.

    Configuration options

    • enable_auto_checks_feedback - if set to true, the tool will automatically provide feedback when a check is failed. Default is true.
    • excluded_checks_list - a list of checks to exclude from the feedback, for example: ["check1", "check2"]. Default is an empty list.
    • enable_help_text - if set to true, the tool will provide a help message with the feedback. Default is true.
    • persistent_comment - if set to true, the tool will overwrite a previous checks comment with the new feedback. Default is true.
    • final_update_message - if persistent_comment is true and updating a previous checks message, the tool will also create a new message: "Persistent checks updated to latest commit". Default is true.

    See more information about the checks tool in the docs.

    Copy link

    @coderabbitai coderabbitai bot left a comment

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    Actionable comments posted: 2

    🧹 Outside diff range and nitpick comments (2)
    pyretailscience/plots/histogram.py (2)

    52-90: Consider adding parameter validation and error handling.

    While the function signature is well-defined with type hints, consider adding explicit parameter validation for critical inputs. For example:

    1. Validate that df is not empty.
    2. Ensure range_lower is less than range_upper when both are provided.
    3. Validate that value_col exists in the DataFrame when provided.

    Adding these checks can prevent potential runtime errors and provide more informative error messages to users.


    140-160: Consider improving error handling in _prepare_value_col.

    The function handles most cases well, but consider adding a check to ensure that when value_col is provided as a list, all elements are strings. This can prevent potential issues later in the code.

    You could add something like:

    if isinstance(value_col, list) and not all(isinstance(col, str) for col in value_col):
        raise ValueError("All elements in value_col must be strings when provided as a list.")
    📜 Review details

    Configuration used: CodeRabbit UI
    Review profile: CHILL

    📥 Commits

    Files that changed from the base of the PR and between 9cabc89 and a6fbe20.

    📒 Files selected for processing (2)
    • pyretailscience/plots/histogram.py (1 hunks)
    • pyretailscience/style/graph_utils.py (5 hunks)
    🔇 Additional comments (11)
    pyretailscience/style/graph_utils.py (7)

    4-5: LGTM: New imports support the hatching functionality.

    The addition of Generator from collections.abc and cycle from itertools is appropriate for implementing the new hatching feature. These imports are correctly placed at the top of the file with other imports.


    8-8: LGTM: numpy import added as suggested.

    The numpy import has been correctly added at the top of the file with other imports, addressing a previous review comment. This import supports the new apply_hatches function.


    15-22: LGTM: Well-implemented _hatches_gen function.

    The new _hatches_gen function is a well-designed generator that efficiently cycles through predefined hatch patterns. It's properly documented and follows Python conventions for internal use (leading underscore). This function aligns with the PR objective of enhancing graph styling capabilities.


    75-92: LGTM: Excellent addition of _add_plot_legend function.

    The new _add_plot_legend function effectively centralizes and improves legend handling logic. It aligns perfectly with the PR objective of refining legend handling for better clarity. The function is well-documented and handles various scenarios, including existing legends, legend titles, and positioning options.


    153-153: LGTM: Improved legend handling in standard_graph_styles.

    The standard_graph_styles function now delegates legend handling to the new _add_plot_legend helper function. This change enhances modularity and aligns with the PR objective of improving graph styling and legend handling. It simplifies the main function while maintaining clear functionality.


    173-192: LGTM: Excellent implementation of apply_hatches function.

    The new apply_hatches function is a valuable addition that enhances graph styling capabilities, aligning perfectly with the PR objectives. It efficiently applies hatch patterns to plot elements, supporting multiple segments for grouped plots. The function is well-documented and makes good use of numpy for performance optimization.


    Line range hint 1-194: Overall excellent enhancements to graph styling capabilities.

    The changes in this file significantly improve graph styling functionality and code organization. Key improvements include:

    1. New _hatches_gen and apply_hatches functions for enhanced plot element styling.
    2. Improved legend handling with the new _add_plot_legend function.
    3. Refactored standard_graph_styles for better modularity.
    4. Proper placement of imports and adherence to coding standards.

    These changes align well with the PR objectives and address previous review comments. The new features and refactoring enhance the overall quality and capabilities of the graph utils module.

    pyretailscience/plots/histogram.py (4)

    1-40: Comprehensive module-level documentation.

    The module-level docstring provides a thorough explanation of the module's functionality, core features, use cases, limitations, and additional features. This level of detail is excellent for users and maintainers of the code.


    91-92: Good error handling for incompatible inputs.

    The check for incompatible value_col and group_col inputs is a good practice. It prevents potential issues early in the function execution.


    199-216: Well-implemented histogram count calculation.

    The _get_num_histograms function correctly handles both value_col and group_col cases to determine the number of histograms. The implementation is concise and effective.


    1-266: Overall, well-implemented histogram plotting functionality with room for minor improvements.

    The histogram.py module provides a comprehensive and flexible solution for plotting histograms from pandas DataFrames or Series. Strengths of the implementation include:

    1. Detailed documentation at both module and function levels.
    2. Proper error handling and parameter validation in most cases.
    3. Support for both single and multiple histograms, with optional grouping.
    4. Range clipping and filling functionality.

    Areas for potential improvement:

    1. Optimize performance in apply_range_clipping by using vectorized operations.
    2. Extend support for multiple value_col when group_col is provided in _plot_histogram.
    3. Add more comprehensive parameter validation in the main plot function.

    These improvements would enhance the module's efficiency and flexibility without compromising its current functionality.

    Comment on lines 162 to 196
    def apply_range_clipping(
    df: pd.DataFrame,
    value_col: list[str],
    range_lower: float | None,
    range_upper: float | None,
    range_method: Literal["clip", "fillna"],
    ) -> pd.DataFrame:
    """Applies range clipping or filling based on the provided method and returns the modified dataframe.

    Args:
    df (pd.DataFrame): The dataframe to apply range clipping to.
    value_col (list of str): The column(s) to apply clipping or filling to.
    range_lower (float, optional): Lower bound for clipping or filling NA values.
    range_upper (float, optional): Upper bound for clipping or filling NA values.
    range_method (Literal, optional): Whether to "clip" values outside the range or "fillna". Defaults to "clip".

    Returns:
    pd.DataFrame: The modified dataframe with the clipping or filling applied.
    """
    if range_lower is None and range_upper is None:
    return df

    if range_method == "clip":
    return df.assign(**{col: df[col].clip(lower=range_lower, upper=range_upper) for col in value_col})

    return df.assign(
    **{
    col: df[col].apply(
    lambda x: np.nan
    if (range_lower is not None and x < range_lower) or (range_upper is not None and x > range_upper)
    else x,
    )
    for col in value_col
    },
    )
    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    🛠️ Refactor suggestion

    Optimize performance using vectorized operations.

    The current implementation uses apply with a lambda function, which can be inefficient for large DataFrames. Consider using vectorized operations for better performance:

    if range_method == "fillna":
        return df.assign(
            **{
                col: df[col].where(
                    ((range_lower is None) | (df[col] >= range_lower)) &
                    ((range_upper is None) | (df[col] <= range_upper)),
                    np.nan
                )
                for col in value_col
            }
        )

    This vectorized approach should be significantly faster, especially for large datasets.

    Comment on lines 218 to 266
    def _plot_histogram(
    df: pd.DataFrame,
    value_col: list[str],
    group_col: str | None,
    ax: Axes | None,
    colors: list[str],
    num_histograms: int,
    **kwargs: dict,
    ) -> Axes:
    """Plots histograms for the provided dataframe.

    Args:
    df (pd.DataFrame): The dataframe to plot.
    value_col (list of str): The column(s) to plot.
    group_col (str, optional): The column used to group data into multiple histograms.
    ax (Axes, optional): Matplotlib axes object to plot on.
    colors: The list of colors use for the plot.
    num_histograms (int): The number of histograms being plotted.
    **kwargs: Additional keyword arguments for Pandas' `plot` function.

    Returns:
    Axes: The matplotlib axes object with the plotted histogram.
    """
    alpha = kwargs.pop("alpha", 0.5)

    is_multi_histogram = num_histograms > 1

    if group_col is None:
    return df[value_col].plot(
    kind="hist",
    ax=ax,
    legend=is_multi_histogram,
    color=colors,
    alpha=alpha,
    **kwargs,
    )

    # if group_col is provided, only use a single value_col
    df_pivot = df.pivot(columns=group_col, values=value_col[0])

    # Plot all columns at once
    return df_pivot.plot(
    kind="hist",
    ax=ax,
    legend=is_multi_histogram,
    alpha=alpha,
    color=colors,
    **kwargs,
    )
    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    🛠️ Refactor suggestion

    Consider supporting multiple value_col with group_col.

    Currently, when group_col is provided, the function only uses the first value_col. Consider extending the functionality to support multiple value_col with group_col. This could involve creating subplots for each value_col or using a more complex pivoting strategy.

    For example:

    if group_col is not None:
        fig, axes = plt.subplots(len(value_col), 1, figsize=(10, 5*len(value_col)))
        for i, col in enumerate(value_col):
            df_pivot = df.pivot(columns=group_col, values=col)
            df_pivot.plot(kind="hist", ax=axes[i] if len(value_col) > 1 else axes, 
                          legend=is_multi_histogram, alpha=alpha, color=colors, **kwargs)
            axes[i].set_title(f'Histogram for {col}')
        return axes

    This would allow users to visualize multiple value columns grouped by a categorical variable.

    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    Copy link

    @coderabbitai coderabbitai bot left a comment

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    Actionable comments posted: 2

    🧹 Outside diff range and nitpick comments (21)
    pyretailscience/style/graph_utils.py (4)

    15-22: LGTM: Well-implemented _hatches_gen function. Consider adding unit tests.

    The _hatches_gen function is well-implemented and documented. The use of a generator with cycle is an efficient approach for repeating hatch patterns. The underscore prefix correctly indicates it's for internal use.

    To address the codecov/patch warning, consider adding unit tests for this function. Would you like assistance in generating test cases?

    🧰 Tools
    🪛 GitHub Check: codecov/patch

    [warning] 21-22: pyretailscience/style/graph_utils.py#L21-L22
    Added lines #L21 - L22 were not covered by tests


    75-94: LGTM: Improved legend handling. Consider minor enhancements and adding tests.

    The _add_legend function effectively centralizes legend-related logic, improving modularity and addressing the PR objective of refining legend handling. The underscore prefix correctly indicates it's for internal use.

    Consider the following minor enhancements:

    1. Use a more descriptive variable name instead of has_legend (e.g., legend_exists).
    2. Consider using a ternary operator for the legend creation to reduce nesting:
      legend = ax.legend(bbox_to_anchor=(1.05, 1), loc="upper left", frameon=False) if move_legend_outside else ax.legend(frameon=False)

    To address the codecov/patch warning, consider adding unit tests for this function. Would you like assistance in generating test cases?

    🧰 Tools
    🪛 GitHub Check: codecov/patch

    [warning] 85-85: pyretailscience/style/graph_utils.py#L85
    Added line #L85 was not covered by tests


    [warning] 91-91: pyretailscience/style/graph_utils.py#L91
    Added line #L91 was not covered by tests


    174-202: LGTM: Well-implemented apply_hatches function. Consider minor enhancement and adding tests.

    The apply_hatches function is a valuable addition that aligns with the PR objective of enhancing graph styling capabilities. It provides a flexible way to apply hatch patterns to different segments of a plot and includes proper handling for legend patches.

    Consider the following minor enhancement:

    1. Use enumerate in the loop to avoid calling next(available_hatches) separately:
      for i, patch_group in enumerate(patch_groups):
          hatch = list(available_hatches)[i % len(list(available_hatches))]
          for patch in patch_group:
              patch.set_hatch(hatch)

    To address the codecov/patch warning, consider adding unit tests for this function. Would you like assistance in generating test cases?

    🧰 Tools
    🪛 GitHub Check: codecov/patch

    [warning] 187-188: pyretailscience/style/graph_utils.py#L187-L188
    Added lines #L187 - L188 were not covered by tests


    [warning] 190-190: pyretailscience/style/graph_utils.py#L190
    Added line #L190 was not covered by tests


    [warning] 192-192: pyretailscience/style/graph_utils.py#L192
    Added line #L192 was not covered by tests


    [warning] 194-194: pyretailscience/style/graph_utils.py#L194
    Added line #L194 was not covered by tests


    [warning] 199-199: pyretailscience/style/graph_utils.py#L199
    Added line #L199 was not covered by tests


    [warning] 201-201: pyretailscience/style/graph_utils.py#L201
    Added line #L201 was not covered by tests


    Line range hint 1-292: Overall: Excellent enhancements to graph styling capabilities. Consider improving test coverage.

    The changes in this file significantly improve the graph styling capabilities, aligning well with the PR objectives. The new functions (_hatches_gen, _add_legend, and apply_hatches) and modifications to existing functions enhance the modularity and flexibility of the graph styling code.

    To further improve the quality of this PR:

    1. Add unit tests for the new functions to address the codecov/patch warnings and ensure robust functionality.
    2. Consider implementing the minor enhancements suggested in the individual review comments.

    Great work on these improvements! Let me know if you need any assistance with writing the additional tests or implementing the suggested enhancements.

    🧰 Tools
    🪛 GitHub Check: codecov/patch

    [warning] 187-188: pyretailscience/style/graph_utils.py#L187-L188
    Added lines #L187 - L188 were not covered by tests


    [warning] 190-190: pyretailscience/style/graph_utils.py#L190
    Added line #L190 was not covered by tests


    [warning] 192-192: pyretailscience/style/graph_utils.py#L192
    Added line #L192 was not covered by tests


    [warning] 194-194: pyretailscience/style/graph_utils.py#L194
    Added line #L194 was not covered by tests


    [warning] 199-199: pyretailscience/style/graph_utils.py#L199
    Added line #L199 was not covered by tests


    [warning] 201-201: pyretailscience/style/graph_utils.py#L201
    Added line #L201 was not covered by tests

    tests/plots/test_line.py (4)

    27-33: LGTM: Improved color mocking fixture.

    The new _mock_color_generators fixture is a good improvement over the previous _mock_get_base_cmap. It provides more flexibility and realism in color mocking for both single and multi-color scenarios.

    Consider adding a comment explaining the purpose of using cycle for color generation, as it might not be immediately obvious to all developers why this approach was chosen over a simple list.


    277-302: LGTM: New test for single value column plot.

    The test_line_plot_single_value_col_calls_dataframe_plot function is a valuable addition to the test suite. It verifies that the DataFrame.plot method is called with the correct arguments for single line plots, which is crucial for ensuring the correct behavior of the plotting function.

    Consider adding an assertion to verify that the x parameter is passed correctly to the DataFrame.plot method, as it's an important aspect of the plot configuration.


    304-329: LGTM: New test for grouped series plot.

    The test_line_plot_grouped_series_calls_dataframe_plot function is an excellent addition to the test suite. It verifies that the DataFrame.plot method is called with the correct arguments for grouped line plots, ensuring the correct behavior of the plotting function when dealing with multiple series.

    Consider adding an assertion to verify that the x parameter is passed correctly to the DataFrame.plot method, similar to the suggestion for the single value column test. Also, it might be beneficial to assert that the group_col is used correctly in the plot configuration.


    Line range hint 1-329: Great improvements to the line plot test suite!

    The changes made to this test file significantly enhance the coverage and robustness of the line plotting functionality tests. The improvements include:

    1. A more flexible and realistic color mocking approach.
    2. Additional tests for edge cases (e.g., datetime index warnings).
    3. New tests to verify correct DataFrame.plot method calls for both single and grouped series plots.

    These enhancements align well with the PR objectives and will help ensure the reliability of the line plotting feature.

    Consider adding integration tests that verify the actual output of the plotting function, complementing these unit tests. This could involve comparing generated plot images to expected results, ensuring that the visual output meets the desired specifications.

    tests/plots/test_histogram.py (11)

    15-23: Simplify fixture decorator

    Remove the parentheses from the @pytest.fixture() decorator to align with pytest best practices.

    Apply this change:

    -@pytest.fixture()
    +@pytest.fixture

    This change should also be applied to the other fixtures in this file (lines 26, 32, and 39).

    🧰 Tools
    🪛 Ruff

    15-15: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    49-62: Enhance test assertions for test_plot_single_histogram

    While the current test checks for the basics, consider adding more specific assertions to ensure the histogram is plotted correctly.

    Consider adding the following assertions:

    1. Check if the title is set correctly:

      assert result_ax.get_title() == "Test Single Histogram"
    2. Verify the number of bins (assuming a default of 10 bins):

      assert len(result_ax.patches) == 10
    3. Check if the x-axis label is set to the value column name:

      assert result_ax.get_xlabel() == "value_1"

    These additional assertions will make the test more robust and informative.


    65-78: Enhance test assertions for test_plot_grouped_histogram

    The current test checks the basics, but adding more specific assertions would improve its effectiveness.

    Consider adding the following assertions:

    1. Check if the title is set correctly:

      assert result_ax.get_title() == "Test Grouped Histogram"
    2. Verify that a legend is present:

      assert result_ax.get_legend() is not None
    3. Check if the legend has the correct number of entries (should be 2 for groups A and B):

      assert len(result_ax.get_legend().get_texts()) == 2
    4. Verify the x-axis label is set to the value column name:

      assert result_ax.get_xlabel() == "value_1"

    These additional assertions will provide a more comprehensive test of the grouped histogram functionality.


    82-104: Improve range clipping test assertions

    The current test checks if all values are within the specified range, but it could be more precise by checking both lower and upper bounds separately.

    Consider modifying the assertion as follows:

    # Check lower bound
    assert all(val >= range_lower - np.finfo(np.float64).eps for val in clipped_values), "Some values are below the lower bound"
    
    # Check upper bound
    assert all(val <= range_upper + np.finfo(np.float64).eps for val in clipped_values), "Some values are above the upper bound"
    
    # Check that at least one value is at or near each bound
    assert any(abs(val - range_lower) < np.finfo(np.float64).eps for val in clipped_values), "No values near the lower bound"
    assert any(abs(val - range_upper) < np.finfo(np.float64).eps for val in clipped_values), "No values near the upper bound"

    This modification will provide more detailed information about any potential issues with the range clipping.


    108-130: Improve range fillna test assertions

    Similar to the range clipping test, this test could be more precise by checking both lower and upper bounds separately and ensuring that the fillna method is correctly applied.

    Consider modifying the assertions as follows:

    # Check lower bound
    assert all(val >= range_lower - np.finfo(np.float64).eps for val in clipped_values), "Some values are below the lower bound"
    
    # Check upper bound
    assert all(val <= range_upper + np.finfo(np.float64).eps for val in clipped_values), "Some values are above the upper bound"
    
    # Check that values outside the range are replaced with NaN
    original_values = sample_dataframe["value_1"]
    assert np.isnan(original_values[original_values < range_lower]).all(), "Values below lower bound not replaced with NaN"
    assert np.isnan(original_values[original_values > range_upper]).all(), "Values above upper bound not replaced with NaN"
    
    # Check that values within the range are unchanged
    assert np.array_equal(
        original_values[(original_values >= range_lower) & (original_values <= range_upper)],
        sample_dataframe["value_1"][(original_values >= range_lower) & (original_values <= range_upper)],
        equal_nan=True
    ), "Values within range were changed"

    These modifications will provide a more comprehensive test of the range fillna functionality.


    134-145: Enhance test assertions for test_plot_single_histogram_series

    The current test checks the basics for plotting a histogram from a Series, but it could be improved with more specific assertions.

    Consider adding the following assertions:

    1. Check if the title is set correctly:

      assert result_ax.get_title() == "Test Single Histogram (Series)"
    2. Verify the number of bins (assuming a default of 10 bins):

      assert len(result_ax.patches) == 10
    3. Check if the x-axis label is set to the Series name (if applicable):

      if sample_series.name:
          assert result_ax.get_xlabel() == sample_series.name
    4. Verify that the y-axis label is set to "Count" or "Frequency":

      assert result_ax.get_ylabel() in ["Count", "Frequency"]

    These additional assertions will provide a more comprehensive test of the Series histogram functionality.


    149-161: Improve hatching test assertions

    While the current test verifies that apply_hatches is called, it doesn't check if the hatching is actually applied to the plot.

    Consider adding the following assertions:

    1. Check if hatching is applied to the patches:

      assert all(patch.get_hatch() is not None for patch in result_ax.patches), "Not all patches have hatching applied"
    2. Verify that all patches have the same hatch pattern (assuming a single hatch pattern is used):

      hatch_patterns = set(patch.get_hatch() for patch in result_ax.patches)
      assert len(hatch_patterns) == 1, "Multiple hatch patterns found"

    These additional checks will ensure that the hatching is correctly applied to the histogram.


    180-200: Enhance legend position test

    The current test verifies that standard_graph_styles is called with the correct parameters, but it doesn't check the actual position of the legend on the plot.

    Consider adding the following assertions:

    1. Check if the legend is present:

      assert result_ax.get_legend() is not None, "Legend is not present"
    2. Verify that the legend is outside the plot area:

      legend = result_ax.get_legend()
      assert legend._loc not in [1, 2, 3, 4], "Legend is not outside the plot area"
    3. Check if the legend position is to the right of the plot (assuming that's the desired location):

      bbox = legend.get_bbox_to_anchor()
      assert bbox.x0 >= 1.0, "Legend is not positioned to the right of the plot"

    These additional checks will ensure that the legend is correctly positioned outside the plot area.


    204-217: Improve source text test

    The current test verifies that add_source_text is called with the correct parameters, but it doesn't check if the text is actually present on the plot.

    Consider adding the following assertion:

    # Check if the source text is present in the plot's text elements
    assert any(text.get_text() == source_text for text in result_ax.texts), "Source text not found in the plot"

    This additional check will ensure that the source text is actually added to the plot.


    221-233: Enhance multiple histograms test

    The current test checks if patches are plotted, but it could be more specific about the number of histograms and their properties.

    Consider adding the following assertions:

    1. Check if two histograms are plotted:

      assert len(set(patch.get_facecolor() for patch in result_ax.patches)) == 2, "Expected two different histogram colors"
    2. Verify that a legend is present with two entries:

      legend = result_ax.get_legend()
      assert legend is not None, "Legend is missing"
      assert len(legend.get_texts()) == 2, "Expected two legend entries"
    3. Check if the legend labels match the column names:

      legend_labels = [text.get_text() for text in legend.get_texts()]
      assert set(legend_labels) == set(["value_1", "value_2"]), "Legend labels do not match column names"
    4. Verify that the x-axis label is not set (as it's ambiguous for multiple histograms):

      assert result_ax.get_xlabel() == "", "X-axis label should not be set for multiple histograms"

    These additional checks will provide a more comprehensive test of the multiple histograms functionality.


    237-299: Enhance DataFrame.plot call tests

    The current tests verify that DataFrame.plot is called with correct arguments, but they could be more specific about the exact values passed.

    For both test_plot_single_histogram_calls_dataframe_plot and test_plot_grouped_histogram_calls_dataframe_plot, consider adding the following improvements:

    1. Use assert_called_once_with instead of assert_called_once and then checking arguments separately. This ensures all arguments are checked in a single assertion.

    2. For the single histogram test:

      mock_df_plot.assert_called_once_with(
          kind="hist",
          y=value_col,
          ax=mocker.ANY,
          legend=False,
          color=mocker.ANY,
          alpha=None,
          bins=mocker.ANY,  # Add this to check if bins argument is passed
      )
    3. For the grouped histogram test:

      mock_df_plot.assert_called_once_with(
          kind="hist",
          y=value_col,
          ax=mocker.ANY,
          legend=True,
          color=mocker.ANY,
          alpha=0.7,
          bins=mocker.ANY,  # Add this to check if bins argument is passed
          by=group_col,  # Add this to check if the grouping column is correctly passed
      )
    4. Add assertions to check if the range clipping is applied correctly:

      # Check if the data was clipped before plotting
      assert (sample_dataframe[value_col] >= range_lower).all() and (sample_dataframe[value_col] <= range_upper).all(), "Data was not clipped correctly"

    These modifications will provide a more comprehensive test of the plotting function's behavior.

    tests/test_standard_graphs.py (2)

    187-211: LGTM: Comprehensive test for color cycling in get_multi_color_cmap.

    This test effectively verifies the cycling behavior of the get_multi_color_cmap function. It ensures that the color sequence repeats correctly after the seventh color and that the second cycle uses lighter shades (300 instead of 500).

    Consider adding a comment explaining the significance of the color shade change in the second cycle (from 500 to 300) to improve the test's readability and document this important behavior.


    132-244: Great addition of comprehensive tests for color mapping functions.

    The new test functions significantly enhance the coverage of get_single_color_cmap and get_multi_color_cmap. They effectively verify various aspects including basic functionality, cycling behavior, and edge cases. The tests are well-structured and use appropriate assertions.

    To further improve the test suite, consider adding a test case for get_multi_color_cmap with more than 14 colors to ensure it continues cycling correctly beyond two full cycles.

    📜 Review details

    Configuration used: CodeRabbit UI
    Review profile: CHILL

    📥 Commits

    Files that changed from the base of the PR and between a6fbe20 and e70d844.

    ⛔ Files ignored due to path filters (2)
    • docs/assets/images/analysis_modules/plots/histogram_plot.svg is excluded by !**/*.svg
    • docs/assets/images/analysis_modules/plots/line_plot.svg is excluded by !**/*.svg
    📒 Files selected for processing (6)
    • pyretailscience/plots/histogram.py (1 hunks)
    • pyretailscience/plots/line.py (3 hunks)
    • pyretailscience/style/graph_utils.py (5 hunks)
    • tests/plots/test_histogram.py (1 hunks)
    • tests/plots/test_line.py (12 hunks)
    • tests/test_standard_graphs.py (2 hunks)
    🚧 Files skipped from review as they are similar to previous changes (1)
    • pyretailscience/plots/line.py
    🧰 Additional context used
    🪛 GitHub Check: codecov/patch
    pyretailscience/plots/histogram.py

    [warning] 155-155: pyretailscience/plots/histogram.py#L155
    Added line #L155 was not covered by tests

    pyretailscience/style/graph_utils.py

    [warning] 21-22: pyretailscience/style/graph_utils.py#L21-L22
    Added lines #L21 - L22 were not covered by tests


    [warning] 85-85: pyretailscience/style/graph_utils.py#L85
    Added line #L85 was not covered by tests


    [warning] 91-91: pyretailscience/style/graph_utils.py#L91
    Added line #L91 was not covered by tests


    [warning] 187-188: pyretailscience/style/graph_utils.py#L187-L188
    Added lines #L187 - L188 were not covered by tests


    [warning] 190-190: pyretailscience/style/graph_utils.py#L190
    Added line #L190 was not covered by tests


    [warning] 192-192: pyretailscience/style/graph_utils.py#L192
    Added line #L192 was not covered by tests


    [warning] 194-194: pyretailscience/style/graph_utils.py#L194
    Added line #L194 was not covered by tests


    [warning] 199-199: pyretailscience/style/graph_utils.py#L199
    Added line #L199 was not covered by tests


    [warning] 201-201: pyretailscience/style/graph_utils.py#L201
    Added line #L201 was not covered by tests

    🪛 Ruff
    tests/plots/test_histogram.py

    15-15: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    26-26: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    32-32: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    39-39: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)

    🔇 Additional comments (18)
    pyretailscience/style/graph_utils.py (4)

    4-5: LGTM: New imports support the added functionality.

    The addition of Generator from collections.abc and cycle from itertools is appropriate for the new _hatches_gen function. These imports are correctly placed at the top of the file, following Python's import conventions.


    8-8: LGTM: numpy import added as suggested.

    The addition of the numpy import at the top of the file aligns with the previous review suggestion and follows Python's import conventions. This import is necessary for the new apply_hatches function.


    124-125: LGTM: Enhanced graph styling for improved visual clarity.

    The changes to set the background color to white and position grid lines behind the plot align with the PR objective of improving graph styling. These modifications enhance the overall visual clarity of the graphs.


    154-154: LGTM: Integrated new legend handling into standard_graph_styles.

    The updated return statement effectively integrates the new _add_legend function into the standard_graph_styles workflow. This change maintains the function's return type (Axes) while incorporating the improved legend handling logic.

    tests/plots/test_line.py (3)

    4-4: LGTM: Import addition for color cycling.

    The addition of from itertools import cycle is appropriate for the new color generation mocking approach.


    43-43: LGTM: Updated fixture usage in existing tests.

    The test functions have been correctly updated to use the new _mock_color_generators fixture, maintaining consistency with the new color mocking approach.

    Also applies to: 64-64


    Line range hint 247-274: LGTM: New test for datetime index warning.

    This new test function test_plot_with_datetime_index_warns is a valuable addition. It ensures that users are properly warned when using datetime-like indices, guiding them towards the more appropriate plots.time_line module. The test is well-implemented and covers an important edge case.

    tests/plots/test_histogram.py (1)

    1-299: Overall assessment of the test suite

    The test suite for the histogram plotting functionality is comprehensive and well-structured. It covers various scenarios including single and grouped histograms, range clipping, and different input types (DataFrame and Series). The use of fixtures and mocks is appropriate and helps in isolating the tests.

    However, there are opportunities to enhance the test coverage and specificity:

    1. Many tests could benefit from more detailed assertions to verify specific aspects of the plotted histograms.
    2. Some tests could be improved by checking the actual visual elements of the plots, not just the function calls.
    3. The range clipping and fillna tests could be more precise in their checks.
    4. Tests for multiple histograms and legend positioning could be more comprehensive.

    Implementing the suggested improvements will result in a more robust and informative test suite, increasing confidence in the histogram plotting functionality.

    🧰 Tools
    🪛 Ruff

    15-15: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    26-26: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    32-32: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    39-39: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)

    pyretailscience/plots/histogram.py (5)

    1-40: Excellent module documentation!

    The comprehensive docstring provides a clear overview of the module's functionality, including core features, use cases, limitations, and additional features. This level of detail will greatly assist users in understanding and effectively utilizing the histogram plotting capabilities.


    42-49: Clean and appropriate imports

    The imports are concise, relevant, and well-organized. The use of type hinting imports and local imports from the pyretailscience package demonstrates good practices in module organization.


    52-90: Well-structured and documented plot function

    The plot function is comprehensive, with a flexible signature that accommodates various plotting scenarios. The use of type hints and a detailed docstring enhances code readability and usability.


    141-264: Well-structured and documented helper functions

    The helper functions (_prepare_value_col, _apply_range_clipping, _get_num_histograms, and _plot_histogram) are well-organized, with clear purposes, appropriate type hints, and informative docstrings. This modular approach enhances code readability and maintainability.

    🧰 Tools
    🪛 GitHub Check: codecov/patch

    [warning] 155-155: pyretailscience/plots/histogram.py#L155
    Added line #L155 was not covered by tests


    1-264: Excellent implementation of histogram plotting functionality

    Overall, this module provides a comprehensive and well-implemented solution for creating histograms from pandas DataFrames or Series. The code is well-structured, thoroughly documented, and follows good programming practices. The modular approach with helper functions enhances readability and maintainability.

    Key strengths:

    1. Comprehensive module-level documentation
    2. Flexible plot function with many customization options
    3. Well-structured helper functions with clear purposes
    4. Proper use of type hints and informative docstrings

    Areas for minor improvement:

    1. Add error handling for invalid range_method values in the plot function
    2. Optimize the _apply_range_clipping function using vectorized operations for better performance

    These improvements will further enhance the robustness and efficiency of the module. Great work on implementing this feature!

    🧰 Tools
    🪛 GitHub Check: codecov/patch

    [warning] 155-155: pyretailscience/plots/histogram.py#L155
    Added line #L155 was not covered by tests

    tests/test_standard_graphs.py (5)

    132-145: LGTM: Well-structured test for get_single_color_cmap.

    The test effectively validates the first three colors returned by the get_single_color_cmap function. The use of islice is appropriate for obtaining a specific number of items from the generator.


    148-164: LGTM: Comprehensive test for color cycling in get_single_color_cmap.

    This test effectively verifies the cycling behavior of the get_single_color_cmap function. It ensures that the color sequence repeats correctly after the third color, which is crucial for the function's intended behavior.


    167-184: LGTM: Thorough test for get_multi_color_cmap with seven colors.

    This test effectively verifies that the get_multi_color_cmap function returns the expected sequence of seven colors. It ensures that the function is correctly implementing the multi-color scheme as intended.


    214-226: LGTM: Good edge case test for get_single_color_cmap.

    This test effectively verifies the behavior of get_single_color_cmap when only two colors are requested. It's a valuable addition to the test suite, complementing the three-color test and helping to ensure the function works correctly for different numbers of colors.


    229-244: LGTM: Valuable edge case test for get_multi_color_cmap.

    This test effectively verifies the behavior of get_multi_color_cmap when five colors are requested. It's a useful addition to the test suite, complementing the seven-color test and helping to ensure the function works correctly for different numbers of colors within its cycle.

    Comment on lines 99 to 106
    if range_lower is not None and range_upper is not None:
    df = _apply_range_clipping(
    df=df,
    value_col=value_col,
    range_lower=range_lower,
    range_upper=range_upper,
    range_method=range_method,
    )
    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    ⚠️ Potential issue

    Consider adding error handling for invalid range_method values

    While the function handles various input scenarios well, it doesn't explicitly handle cases where an invalid range_method is provided. Consider adding a check to raise a ValueError for invalid range_method values:

    if range_method not in ["clip", "fillna"]:
        raise ValueError(f"Invalid range_method: {range_method}. Expected 'clip' or 'fillna'.")

    This will prevent unexpected behavior and provide clear feedback to users.

    Comment on lines 163 to 194
    def _apply_range_clipping(
    df: pd.DataFrame,
    value_col: list[str],
    range_lower: float,
    range_upper: float,
    range_method: Literal["clip", "fillna"],
    ) -> pd.DataFrame:
    """Applies range clipping or filling based on the provided method and returns the modified dataframe.

    Args:
    df (pd.DataFrame): The dataframe to apply range clipping to.
    value_col (list of str): The column(s) to apply clipping or filling to.
    range_lower (float): Lower bound for clipping or filling NA values.
    range_upper (float): Upper bound for clipping or filling NA values.
    range_method (Literal, optional): Whether to "clip" values outside the range or "fillna". Defaults to "clip".

    Returns:
    pd.DataFrame: The modified dataframe with the clipping or filling applied.
    """
    if range_method == "clip":
    return df.assign(**{col: df[col].clip(lower=range_lower, upper=range_upper) for col in value_col})

    return df.assign(
    **{
    col: df[col].apply(
    lambda x: np.nan
    if (range_lower is not None and x < range_lower) or (range_upper is not None and x > range_upper)
    else x,
    )
    for col in value_col
    },
    )
    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    🛠️ Refactor suggestion

    Optimize performance in _apply_range_clipping function

    The current implementation of _apply_range_clipping uses apply with a lambda function, which can be inefficient for large DataFrames. Consider using vectorized operations for better performance:

    def _apply_range_clipping(
        df: pd.DataFrame,
        value_col: list[str],
        range_lower: float,
        range_upper: float,
        range_method: Literal["clip", "fillna"],
    ) -> pd.DataFrame:
        if range_method == "clip":
            return df.assign(**{col: df[col].clip(lower=range_lower, upper=range_upper) for col in value_col})
        
        return df.assign(
            **{
                col: df[col].where(
                    ((range_lower is None) | (df[col] >= range_lower)) &
                    ((range_upper is None) | (df[col] <= range_upper)),
                    np.nan
                )
                for col in value_col
            }
        )

    This vectorized approach should be significantly faster, especially for large datasets.

    Copy link

    @coderabbitai coderabbitai bot left a comment

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    Actionable comments posted: 4

    📜 Review details

    Configuration used: CodeRabbit UI
    Review profile: CHILL

    📥 Commits

    Files that changed from the base of the PR and between e70d844 and 1aba8ab.

    📒 Files selected for processing (1)
    • pyretailscience/plots/histogram.py (1 hunks)
    🧰 Additional context used
    🪛 GitHub Check: codecov/patch
    pyretailscience/plots/histogram.py

    [warning] 155-155: pyretailscience/plots/histogram.py#L155
    Added line #L155 was not covered by tests

    🔇 Additional comments (2)
    pyretailscience/plots/histogram.py (2)

    1-40: Well-structured and comprehensive module-level docstring.

    The module-level docstring provides an excellent overview of the histogram plotting functionality. It clearly outlines core features, use cases, limitations, and additional features, which will greatly assist users in understanding and utilizing the module effectively.


    1-263: Overall, excellent implementation with room for minor enhancements.

    The histogram.py module provides a comprehensive and well-structured solution for creating histograms from pandas DataFrames or Series. The code is well-documented, handles various scenarios, and includes appropriate error checking.

    Key strengths:

    1. Comprehensive module-level docstring
    2. Flexible functionality supporting both single and grouped histograms
    3. Well-organized helper functions
    4. Proper type hinting and error handling

    Suggested enhancements:

    1. Use typing.Union for better compatibility with older Python versions
    2. Add error handling for invalid range_method values
    3. Optimize the _apply_range_clipping function for better performance
    4. Extend support for multiple value_col with group_col

    These enhancements will further improve the module's robustness, performance, and flexibility.

    🧰 Tools
    🪛 GitHub Check: codecov/patch

    [warning] 155-155: pyretailscience/plots/histogram.py#L155
    Added line #L155 was not covered by tests

    Comment on lines 52 to 138
    def plot(
    df: pd.DataFrame | pd.Series,
    value_col: str | list[str] | None = None,
    group_col: str | None = None,
    title: str | None = None,
    x_label: str | None = None,
    y_label: str | None = None,
    legend_title: str | None = None,
    ax: Axes | None = None,
    source_text: str | None = None,
    move_legend_outside: bool = False,
    range_lower: float | None = None,
    range_upper: float | None = None,
    range_method: Literal["clip", "fillna"] = "clip",
    use_hatch: bool = False,
    **kwargs: dict[str, Any],
    ) -> SubplotBase:
    """Plots a histogram of `value_col`, optionally split by `group_col`.

    Args:
    df (pd.DataFrame | pd.Series): The dataframe (or series) to plot.
    value_col (str or list of str, optional): The column(s) to plot. Can be a list of columns for multiple histograms.
    group_col (str, optional): The column used to define different histograms.
    title (str, optional): The title of the plot.
    x_label (str, optional): The x-axis label.
    y_label (str, optional): The y-axis label.
    legend_title (str, optional): The title of the legend.
    ax (Axes, optional): Matplotlib axes object to plot on.
    source_text (str, optional): The source text to add to the plot.
    move_legend_outside (bool, optional): Move the legend outside the plot.
    range_lower (float, optional): Lower bound for clipping or filling NA values.
    range_upper (float, optional): Upper bound for clipping or filling NA values.
    range_method (str, optional): Whether to "clip" values outside the range or "fillna". Defaults to "clip".
    use_hatch (bool, optional): Whether to use hatching for the bars.
    **kwargs: Additional keyword arguments for Pandas' `plot` function.

    Returns:
    SubplotBase: The matplotlib axes object.
    """
    if isinstance(value_col, list) and group_col is not None:
    raise ValueError("`value_col` cannot be a list when `group_col` is provided. Please choose one or the other.")

    value_col = _prepare_value_col(df=df, value_col=value_col)

    if isinstance(df, pd.Series):
    df = df.to_frame(name=value_col[0])

    if range_lower is not None and range_upper is not None:
    df = _apply_range_clipping(
    df=df,
    value_col=value_col,
    range_lower=range_lower,
    range_upper=range_upper,
    range_method=range_method,
    )

    num_histograms = _get_num_histograms(df=df, value_col=value_col, group_col=group_col)

    color_gen = get_multi_color_cmap()
    colors = [next(color_gen) for _ in range(num_histograms)]

    ax = _plot_histogram(
    df=df,
    value_col=value_col,
    group_col=group_col,
    ax=ax,
    colors=colors,
    num_histograms=num_histograms,
    **kwargs,
    )

    ax = gu.standard_graph_styles(
    ax=ax,
    title=title,
    x_label=x_label,
    y_label=y_label,
    legend_title=legend_title,
    move_legend_outside=move_legend_outside,
    )

    if use_hatch:
    ax = gu.apply_hatches(ax=ax, num_segments=num_histograms)

    if source_text:
    gu.add_source_text(ax=ax, source_text=source_text)

    return gu.standard_tick_styles(ax=ax)
    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    🛠️ Refactor suggestion

    Add error handling for invalid range_method values.

    The plot function handles various scenarios well, but it doesn't explicitly check for invalid range_method values. Consider adding a check to raise a ValueError for invalid range_method values:

    Add the following check at the beginning of the function:

    if range_method not in ["clip", "fillna"]:
        raise ValueError(f"Invalid range_method: {range_method}. Expected 'clip' or 'fillna'.")

    This will prevent unexpected behavior and provide clear feedback to users.

    Comment on lines 163 to 193
    def _apply_range_clipping(
    df: pd.DataFrame,
    value_col: list[str],
    range_lower: float,
    range_upper: float,
    range_method: Literal["clip", "fillna"],
    ) -> pd.DataFrame:
    """Applies range clipping or filling based on the provided method and returns the modified dataframe.

    Args:
    df (pd.DataFrame): The dataframe to apply range clipping to.
    value_col (list of str): The column(s) to apply clipping or filling to.
    range_lower (float): Lower bound for clipping or filling NA values.
    range_upper (float): Upper bound for clipping or filling NA values.
    range_method (Literal, optional): Whether to "clip" values outside the range or "fillna". Defaults to "clip".

    Returns:
    pd.DataFrame: The modified dataframe with the clipping or filling applied.
    """
    if range_method == "clip":
    return df.assign(**{col: df[col].clip(lower=range_lower, upper=range_upper) for col in value_col})

    return df.assign(
    **{
    col: df[col].where(
    ((range_lower is None) | (df[col] >= range_lower)) & ((range_upper is None) | (df[col] <= range_upper)),
    np.nan,
    )
    for col in value_col
    },
    )
    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    🛠️ Refactor suggestion

    Optimize performance in _apply_range_clipping function.

    The current implementation of _apply_range_clipping uses a list comprehension with where method, which is good. However, we can further optimize it by using a single where operation for all columns:

    Consider refactoring the function as follows:

    def _apply_range_clipping(
        df: pd.DataFrame,
        value_col: list[str],
        range_lower: float,
        range_upper: float,
        range_method: Literal["clip", "fillna"],
    ) -> pd.DataFrame:
        if range_method == "clip":
            return df.assign(**{col: df[col].clip(lower=range_lower, upper=range_upper) for col in value_col})
    
        mask = ((range_lower is None) | (df[value_col] >= range_lower)) & ((range_upper is None) | (df[value_col] <= range_upper))
        return df.assign(**{col: df[col].where(mask[col], np.nan) for col in value_col})

    This approach creates a single boolean mask for all columns at once, which can be more efficient for large DataFrames with multiple value columns.

    Copy link
    Contributor

    qodo-merge-pro bot commented Oct 2, 2024

    PR-Agent was enabled for this repository. To continue using it, please link your git user with your CodiumAI identity here.

    CI Failure Feedback 🧐

    Action: Pre-Commit

    Failed stage: Run Pre-commit [❌]

    Failed test name: ruff-format

    Failure summary:

    The action failed due to the following reasons:

  • The ruff-format hook failed because it modified files during its execution. This indicates that the
    code did not meet the formatting standards enforced by the ruff-format hook.
  • A warning was issued regarding potential conflicts with the formatter due to the rules COM812 and
    ISC001. It is recommended to disable these rules to avoid unexpected behavior.
  • The trim trailing whitespace hook also failed, suggesting that some files contained trailing
    whitespace that needed to be removed.

  • Relevant error logs:
    1:  ##[group]Operating System
    2:  Ubuntu
    ...
    
    467:  [INFO] This may take a few minutes...
    468:  [INFO] Installing environment for https://github.com/pre-commit/pre-commit-hooks.
    469:  [INFO] Once installed this environment will be reused.
    470:  [INFO] This may take a few minutes...
    471:  [INFO] Installing environment for https://github.com/kynan/nbstripout.
    472:  [INFO] Once installed this environment will be reused.
    473:  [INFO] This may take a few minutes...
    474:  ruff.....................................................................Passed
    475:  ruff-format..............................................................Failed
    476:  - hook id: ruff-format
    477:  - files were modified by this hook
    478:  warning: The following rules may cause conflicts when used with the formatter: `COM812`, `ISC001`. To avoid unexpected behavior, we recommend disabling these rules, either by removing them from the `select` or `extend-select` configuration, or adding them to the `ignore` configuration.
    479:  1 file reformatted, 26 files left unchanged
    480:  trim trailing whitespace.................................................Failed
    ...
    
    484:  Fixing docs/assets/images/analysis_modules/plots/line_plot.svg
    485:  Fixing docs/assets/images/analysis_modules/plots/histogram_plot.svg
    486:  fix end of files.........................................................Passed
    487:  fix python encoding pragma...............................................Passed
    488:  check yaml...............................................................Passed
    489:  debug statements (python)................................................Passed
    490:  pytest...................................................................Passed
    491:  nbstripout...............................................................Passed
    492:  ##[error]Process completed with exit code 1.
    

    ✨ CI feedback usage guide:

    The CI feedback tool (/checks) automatically triggers when a PR has a failed check.
    The tool analyzes the failed checks and provides several feedbacks:

    • Failed stage
    • Failed test name
    • Failure summary
    • Relevant error logs

    In addition to being automatically triggered, the tool can also be invoked manually by commenting on a PR:

    /checks "https://github.com/{repo_name}/actions/runs/{run_number}/job/{job_number}"
    

    where {repo_name} is the name of the repository, {run_number} is the run number of the failed check, and {job_number} is the job number of the failed check.

    Configuration options

    • enable_auto_checks_feedback - if set to true, the tool will automatically provide feedback when a check is failed. Default is true.
    • excluded_checks_list - a list of checks to exclude from the feedback, for example: ["check1", "check2"]. Default is an empty list.
    • enable_help_text - if set to true, the tool will provide a help message with the feedback. Default is true.
    • persistent_comment - if set to true, the tool will overwrite a previous checks comment with the new feedback. Default is true.
    • final_update_message - if persistent_comment is true and updating a previous checks message, the tool will also create a new message: "Persistent checks updated to latest commit". Default is true.

    See more information about the checks tool in the docs.

    range_upper=range_upper,
    range_method=range_method,
    )
    if range_lower is not None and range_upper is not None:
    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    One of the range values could be none. For instance if you want to only upper or lower clip the values.

    Comment on lines 165 to 166
    range_lower: float | None,
    range_upper: float | None,
    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    Similar hear. Either of the values could be none



    # Fixture for mocking graph_utils functions
    @pytest.fixture()
    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    @Mrglglglglgl Tiny change here

    Copy link
    Contributor

    qodo-merge-pro bot commented Oct 3, 2024

    PR-Agent was enabled for this repository. To continue using it, please link your git user with your CodiumAI identity here.

    CI Failure Feedback 🧐

    Action: Pre-Commit

    Failed stage: Run Pre-commit [❌]

    Failed test name: trim trailing whitespace

    Failure summary:

    The action failed because the check 'trim trailing whitespace' did not pass. This check is
    responsible for ensuring that there are no trailing whitespace characters in the files. The failure
    indicates that some files contained trailing whitespace that needed to be removed.

    Relevant error logs:
    1:  ##[group]Operating System
    2:  Ubuntu
    ...
    
    468:  [INFO] Installing environment for https://github.com/pre-commit/pre-commit-hooks.
    469:  [INFO] Once installed this environment will be reused.
    470:  [INFO] This may take a few minutes...
    471:  [INFO] Installing environment for https://github.com/kynan/nbstripout.
    472:  [INFO] Once installed this environment will be reused.
    473:  [INFO] This may take a few minutes...
    474:  ruff.....................................................................Passed
    475:  ruff-format..............................................................Passed
    476:  trim trailing whitespace.................................................Failed
    ...
    
    480:  Fixing docs/assets/images/analysis_modules/plots/line_plot.svg
    481:  Fixing docs/assets/images/analysis_modules/plots/histogram_plot.svg
    482:  fix end of files.........................................................Passed
    483:  fix python encoding pragma...............................................Passed
    484:  check yaml...............................................................Passed
    485:  debug statements (python)................................................Passed
    486:  pytest...................................................................Passed
    487:  nbstripout...............................................................Passed
    488:  ##[error]Process completed with exit code 1.
    

    ✨ CI feedback usage guide:

    The CI feedback tool (/checks) automatically triggers when a PR has a failed check.
    The tool analyzes the failed checks and provides several feedbacks:

    • Failed stage
    • Failed test name
    • Failure summary
    • Relevant error logs

    In addition to being automatically triggered, the tool can also be invoked manually by commenting on a PR:

    /checks "https://github.com/{repo_name}/actions/runs/{run_number}/job/{job_number}"
    

    where {repo_name} is the name of the repository, {run_number} is the run number of the failed check, and {job_number} is the job number of the failed check.

    Configuration options

    • enable_auto_checks_feedback - if set to true, the tool will automatically provide feedback when a check is failed. Default is true.
    • excluded_checks_list - a list of checks to exclude from the feedback, for example: ["check1", "check2"]. Default is an empty list.
    • enable_help_text - if set to true, the tool will provide a help message with the feedback. Default is true.
    • persistent_comment - if set to true, the tool will overwrite a previous checks comment with the new feedback. Default is true.
    • final_update_message - if persistent_comment is true and updating a previous checks message, the tool will also create a new message: "Persistent checks updated to latest commit". Default is true.

    See more information about the checks tool in the docs.

    Copy link

    @coderabbitai coderabbitai bot left a comment

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    Actionable comments posted: 3

    🧹 Outside diff range and nitpick comments (2)
    tests/plots/test_histogram.py (2)

    15-15: Consider simplifying the fixture decorator

    The @pytest.fixture() decorator can be simplified to @pytest.fixture without parentheses when no parameters are needed.

    Apply this change:

    -@pytest.fixture()
    +@pytest.fixture

    This change should also be applied to the fixtures on lines 26, 32, and 39.

    🧰 Tools
    🪛 Ruff

    15-15: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    104-104: Consider using a larger epsilon value for floating-point comparisons

    The current epsilon value np.finfo(np.float64).eps is extremely small and might lead to false negatives in floating-point comparisons. A slightly larger epsilon value could provide more robust comparisons while still maintaining accuracy.

    Consider using a larger epsilon value, such as 1e-9:

    -assert all(range_lower <= val + np.finfo(np.float64).eps <= range_upper for val in clipped_values)
    +assert all(range_lower <= val + 1e-9 <= range_upper for val in clipped_values)

    This change should also be applied to similar assertions in other test functions (e.g., lines 130, 154, 178, 203).

    📜 Review details

    Configuration used: CodeRabbit UI
    Review profile: CHILL

    📥 Commits

    Files that changed from the base of the PR and between b8ad25c and 4e0e497.

    📒 Files selected for processing (2)
    • pyretailscience/plots/histogram.py (1 hunks)
    • tests/plots/test_histogram.py (1 hunks)
    🧰 Additional context used
    🪛 Ruff
    tests/plots/test_histogram.py

    15-15: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    26-26: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    32-32: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)


    39-39: Use @pytest.fixture over @pytest.fixture()

    Remove parentheses

    (PT001)

    🔇 Additional comments (6)
    pyretailscience/plots/histogram.py (5)

    1-40: Comprehensive module-level docstring.

    The module-level docstring provides a clear and detailed explanation of the module's functionality, features, use cases, and limitations. This is excellent documentation practice.


    141-161: Well-implemented value column preparation.

    The _prepare_value_col function effectively handles different input types and edge cases, ensuring that value_col is always a list of strings.


    203-220: Correct implementation of histogram count calculation.

    The _get_num_histograms function correctly calculates the number of histograms based on the input parameters and handles both grouped and non-grouped cases.


    1-270: Overall, well-implemented histogram plotting module with room for minor improvements.

    The histogram.py module provides comprehensive functionality for creating histograms from pandas DataFrames or Series. The code is well-documented, handles various input types and scenarios, and generally follows good programming practices.

    Key strengths:

    1. Comprehensive module-level and function-level docstrings.
    2. Flexible handling of input types (DataFrame and Series).
    3. Support for range clipping and filling.
    4. Efficient use of vectorized operations.

    Areas for potential improvement:

    1. Use typing.Union for better compatibility with older Python versions.
    2. Add error handling for invalid range_method values in the main plot function.
    3. Optimize the _apply_range_clipping function for the "fillna" method.
    4. Extend functionality to support multiple value columns with grouping in _plot_histogram.

    These improvements would enhance the module's robustness, performance, and flexibility.


    42-50: 🛠️ Refactor suggestion

    Consider using typing.Union for better compatibility.

    The use of the | operator in type hints (e.g., pd.DataFrame | pd.Series) is only supported in Python 3.10 and newer. To maintain compatibility with earlier Python versions, consider using typing.Union.

    Apply this diff to update the imports:

    -from typing import Any, Literal
    +from typing import Any, Literal, Union

    Then update type hints throughout the file, for example:

    -def plot(df: pd.DataFrame | pd.Series, ...
    +def plot(df: Union[pd.DataFrame, pd.Series], ...

    Likely invalid or redundant comment.

    tests/plots/test_histogram.py (1)

    309-371: Good job addressing the mocking issue

    The implementation of test_plot_single_histogram_calls_dataframe_plot and test_plot_grouped_histogram_calls_dataframe_plot correctly addresses the issue mentioned in the past review comments. By mocking pandas.DataFrame.plot directly and asserting on the mock, you've ensured that the tests accurately capture the calls made to the plot method.

    Comment on lines +52 to +138
    def plot(
    df: pd.DataFrame | pd.Series,
    value_col: str | list[str] | None = None,
    group_col: str | None = None,
    title: str | None = None,
    x_label: str | None = None,
    y_label: str | None = None,
    legend_title: str | None = None,
    ax: Axes | None = None,
    source_text: str | None = None,
    move_legend_outside: bool = False,
    range_lower: float | None = None,
    range_upper: float | None = None,
    range_method: Literal["clip", "fillna"] = "clip",
    use_hatch: bool = False,
    **kwargs: dict[str, Any],
    ) -> SubplotBase:
    """Plots a histogram of `value_col`, optionally split by `group_col`.

    Args:
    df (pd.DataFrame | pd.Series): The dataframe (or series) to plot.
    value_col (str or list of str, optional): The column(s) to plot. Can be a list of columns for multiple histograms.
    group_col (str, optional): The column used to define different histograms.
    title (str, optional): The title of the plot.
    x_label (str, optional): The x-axis label.
    y_label (str, optional): The y-axis label.
    legend_title (str, optional): The title of the legend.
    ax (Axes, optional): Matplotlib axes object to plot on.
    source_text (str, optional): The source text to add to the plot.
    move_legend_outside (bool, optional): Move the legend outside the plot.
    range_lower (float, optional): Lower bound for clipping or filling NA values.
    range_upper (float, optional): Upper bound for clipping or filling NA values.
    range_method (str, optional): Whether to "clip" values outside the range or "fillna". Defaults to "clip".
    use_hatch (bool, optional): Whether to use hatching for the bars.
    **kwargs: Additional keyword arguments for Pandas' `plot` function.

    Returns:
    SubplotBase: The matplotlib axes object.
    """
    if isinstance(value_col, list) and group_col is not None:
    raise ValueError("`value_col` cannot be a list when `group_col` is provided. Please choose one or the other.")

    value_col = _prepare_value_col(df=df, value_col=value_col)

    if isinstance(df, pd.Series):
    df = df.to_frame(name=value_col[0])

    if (range_lower is not None) or (range_upper is not None):
    df = _apply_range_clipping(
    df=df,
    value_col=value_col,
    range_lower=range_lower,
    range_upper=range_upper,
    range_method=range_method,
    )

    num_histograms = _get_num_histograms(df=df, value_col=value_col, group_col=group_col)

    color_gen = get_multi_color_cmap()
    colors = [next(color_gen) for _ in range(num_histograms)]

    ax = _plot_histogram(
    df=df,
    value_col=value_col,
    group_col=group_col,
    ax=ax,
    colors=colors,
    num_histograms=num_histograms,
    **kwargs,
    )

    ax = gu.standard_graph_styles(
    ax=ax,
    title=title,
    x_label=x_label,
    y_label=y_label,
    legend_title=legend_title,
    move_legend_outside=move_legend_outside,
    )

    if use_hatch:
    ax = gu.apply_hatches(ax=ax, num_segments=num_histograms)

    if source_text:
    gu.add_source_text(ax=ax, source_text=source_text)

    return gu.standard_tick_styles(ax=ax)
    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    🛠️ Refactor suggestion

    Add error handling for invalid range_method values.

    The plot function handles various scenarios well, but it doesn't explicitly check for invalid range_method values. Consider adding a check to raise a ValueError for invalid range_method values.

    Add the following check at the beginning of the function:

    if range_method not in ["clip", "fillna"]:
        raise ValueError(f"Invalid range_method: {range_method}. Expected 'clip' or 'fillna'.")

    This will prevent unexpected behavior and provide clear feedback to users.

    Comment on lines +163 to +201
    def _apply_range_clipping(
    df: pd.DataFrame,
    value_col: list[str],
    range_lower: float | None = None,
    range_upper: float | None = None,
    range_method: Literal["clip", "fillna"] = "fillna",
    ) -> pd.DataFrame:
    """Applies range clipping or filling based on the provided method and returns the modified dataframe.

    Args:
    df (pd.DataFrame): The dataframe to apply range clipping to.
    value_col (list of str): The column(s) to apply clipping or filling to.
    range_lower (float | None, optional): Lower bound for clipping or filling NA values.
    range_upper (float | None, optional): Upper bound for clipping or filling NA values.
    range_method (Literal, optional): Whether to "clip" values outside the range or "fillna". Defaults to "fillna".

    Returns:
    pd.DataFrame: The modified dataframe with the clipping or filling applied.
    """
    if range_method not in ["clip", "fillna"]:
    error_msg = f"Invalid range_method: {range_method}. Expected 'clip' or 'fillna'."
    raise ValueError(error_msg)

    if range_method == "clip":
    # Clip values based on the provided lower and upper bounds
    return df.assign(**{col: df[col].clip(lower=range_lower, upper=range_upper) for col in value_col})

    # For the "fillna" method, we will create a mask for the valid range and replace out-of-range values with NaN
    def apply_mask(col: str) -> pd.Series:
    mask = pd.Series([True] * len(df))
    if range_lower is not None:
    mask &= df[col] >= range_lower
    if range_upper is not None:
    mask &= df[col] <= range_upper
    return df[col].where(mask, np.nan)

    # Apply the mask to each column
    return df.assign(**{col: apply_mask(col) for col in value_col})

    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    🛠️ Refactor suggestion

    Optimize performance in _apply_range_clipping function.

    The current implementation of _apply_range_clipping is good, but we can further optimize it by using a single where operation for all columns when using the "fillna" method.

    Consider refactoring the function as follows:

    def _apply_range_clipping(
        df: pd.DataFrame,
        value_col: list[str],
        range_lower: float | None = None,
        range_upper: float | None = None,
        range_method: Literal["clip", "fillna"] = "fillna",
    ) -> pd.DataFrame:
        if range_method == "clip":
            return df.assign(**{col: df[col].clip(lower=range_lower, upper=range_upper) for col in value_col})
    
        mask = pd.DataFrame(True, index=df.index, columns=value_col)
        if range_lower is not None:
            mask &= df[value_col] >= range_lower
        if range_upper is not None:
            mask &= df[value_col] <= range_upper
        return df.assign(**{col: df[col].where(mask[col], np.nan) for col in value_col})

    This approach creates a single boolean mask for all columns at once, which can be more efficient for large DataFrames with multiple value columns.

    Comment on lines +222 to +270
    def _plot_histogram(
    df: pd.DataFrame,
    value_col: list[str],
    group_col: str | None,
    ax: Axes | None,
    colors: list[str],
    num_histograms: int,
    **kwargs: dict,
    ) -> Axes:
    """Plots histograms for the provided dataframe.

    Args:
    df (pd.DataFrame): The dataframe to plot.
    value_col (list of str): The column(s) to plot.
    group_col (str, optional): The column used to group data into multiple histograms.
    ax (Axes, optional): Matplotlib axes object to plot on.
    colors: The list of colors use for the plot.
    num_histograms (int): The number of histograms being plotted.
    **kwargs: Additional keyword arguments for Pandas' `plot` function.

    Returns:
    Axes: The matplotlib axes object with the plotted histogram.
    """
    is_multi_histogram = num_histograms > 1

    alpha = kwargs.pop("alpha", 0.7) if is_multi_histogram else kwargs.pop("alpha", None)

    if group_col is None:
    return df[value_col].plot(
    kind="hist",
    ax=ax,
    legend=is_multi_histogram,
    color=colors,
    alpha=alpha,
    **kwargs,
    )

    # if group_col is provided, only use a single value_col
    df_pivot = df.pivot(columns=group_col, values=value_col[0])

    # Plot all columns at once
    return df_pivot.plot(
    kind="hist",
    ax=ax,
    legend=is_multi_histogram,
    alpha=alpha,
    color=colors,
    **kwargs,
    )
    Copy link

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    🛠️ Refactor suggestion

    Consider supporting multiple value_col with group_col.

    Currently, when group_col is provided, the function only uses the first value_col. This limits the functionality when users want to plot multiple value columns grouped by a categorical variable.

    Consider extending the functionality to support multiple value_col with group_col. Here's a possible approach:

    if group_col is not None:
        fig, axes = plt.subplots(len(value_col), 1, figsize=(10, 5*len(value_col)))
        axes = [axes] if len(value_col) == 1 else axes
        for i, col in enumerate(value_col):
            df_pivot = df.pivot(columns=group_col, values=col)
            df_pivot.plot(
                kind="hist",
                ax=axes[i],
                legend=is_multi_histogram,
                alpha=alpha,
                color=colors,
                **kwargs
            )
            axes[i].set_title(f'Histogram for {col}')
        return axes if len(value_col) > 1 else axes[0]

    This approach creates a subplot for each value column when a group column is provided, allowing users to visualize multiple value columns grouped by a categorical variable.

    @mvanwyk
    Copy link
    Contributor

    mvanwyk commented Oct 3, 2024

    @Mrglglglglgl lgtm. Feel free to merge once you've fixed the pre-commit issues

    @Mrglglglglgl Mrglglglglgl merged commit a9bb418 into main Oct 3, 2024
    3 checks passed
    @coderabbitai coderabbitai bot mentioned this pull request Oct 4, 2024
    Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
    Labels
    documentation Improvements or additions to documentation enhancement New feature or request Review effort [1-5]: 4 Tests
    Projects
    None yet
    Development

    Successfully merging this pull request may close these issues.

    Standard histogram plot
    2 participants