Skip to content

predict doesn't work for FE-only models #258

@nilshg

Description

@nilshg

This is sort of self-assigned:

julia> using FixedEffectModels, DataFrames

julia> df = DataFrame(y=rand(10), id = rand(1:2, 10), t = rand(1:2, 10));

julia> predict(reg(df, @formula(y ~ fe(id) + fe(t)), save = :fe), df)
ERROR: ArgumentError: collection must be non-empty
Stacktrace:
 [1] first(itr::@NamedTuple{})
   @ Base .\abstractarray.jl:470
 [2] missing_omit(d::@NamedTuple{})
   @ StatsModels C:\Users\ngudat\.julia\packages\StatsModels\syVEq\src\modelframe.jl:57
 [3] missing_omit(data::@NamedTuple{y::Vector{Float64}, id::Vector{Int64}, t::Vector{Int64}}, formula::MatrixTerm{Tuple{InterceptTerm{false}}})
   @ StatsModels C:\Users\ngudat\.julia\packages\StatsModels\syVEq\src\modelframe.jl:70
 [4] predict(m::FixedEffectModel, data::DataFrame)
   @ FixedEffectModels C:\Users\ngudat\.julia\packages\FixedEffectModels\9B0we\src\FixedEffectModel.jl:142
 [5] top-level scope
   @ REPL[34]:1

julia> predict(reg(df, @formula(y ~ id + fe(t)), save = :fe), df)
10-element Vector{Float64}:
(...)

a workaround is to add a column of ones:

df.x .= 1
reg(@formula(y ~ -1 + x + fe(id) + fe(t))

but that's clearly not ideal.

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions