This package was developed to provide benchmark data for datadrift detection methods. Therefore, it is mostly concerned with generating data and the underlying concept and data shift ground truths used to evaluate the detection methods.
The main interface of the package is the class: DataGeneratorGraph, therefore the initialization and main methods will be explained here.
For local generation of the SiD2Re benchmarks refer to the functions generate_benchmark_* found under sid2re.benchmarks.
- benchmark_v1: Initial benchmark associated with the original publication (10.1109/INDIN51400.2023.10218255). Selected number of seeds, that produce interpretable concepts. Limited to low dimensionality datasets.
- benchmark_v2: Benchmark with reworked graph based generation backend, that focuses on the variation of one particular concept (consistent seed). Suitable for ablation studies. Includes datasets with up to 20 dimensions.
For visualization the following script is used:
def plot_data(data):
data = data.rename(columns={"0_0": "feature_1", "0_1": "feature_2", "O_0": "target"})
# Get concept information
time_stamps = data["time_idx"].values
# Plot the generated data
plot = sns.pairplot(data, height=2, aspect=4,
plot_kws=dict(hue=time_stamps, palette="blend:darkblue,orange", edgecolor=None,
size=0.1, alpha=0.75),
diag_kind='kde', x_vars=["time_idx"], y_vars=["target", "feature_2", "feature_1"])
plot = sns.pairplot(data, height=2, aspect=2,
plot_kws=dict(hue=time_stamps, palette="blend:darkblue,orange", edgecolor=None,
size=0.1, alpha=0.75),
diag_kind='kde', x_vars=["feature_1", "feature_2"], y_vars=["target"])generator = DataGeneratorGraph(number_of_features=np.array([2]),
root_distros=[2, 0, 0, 0],
number_of_outputs=1,
n_target_dep=2,
number_of_data_points=500,
rand_seed=4)
# Generate data
data = generator.get_data()
plot_data(data)generator = DataGeneratorGraph(number_of_features=np.array([2]),
root_distros=[0, 0, 0, 2],
number_of_outputs=1,
n_target_dep=2,
number_of_data_points=1000,
continuous_time=True,
rand_seed=3)
data = generator.get_data()
plot_data(data)generator = DataGeneratorGraph(number_of_features=np.array([2]),
root_distros=[2, 0, 0, 0],
number_of_outputs=1,
n_target_dep=2,
concept_drifts=1,
number_of_data_points=1000,
continuous_time=True,
rand_seed=6)
data = generator.get_data()
concept_info, data_drift_info =generator.get_shift_information()
print(concept_info)
plot_data(data)Output:
time_stamp(centre) radius shift class
0 630.866645 250.245898 [-178.57203028720033, -66.39596106023545, -164... sudden





