-
Notifications
You must be signed in to change notification settings - Fork 272
Open
Labels
agentsAgent SamplesAgent SamplesenhancementNew feature or requestNew feature or requestoicOpen Innovation Community ContributionsOpen Innovation Community Contributions
Milestone
Description
Overview
Create a sample agent implementation using IBM BeeAI Framework with support for both OpenAI-compatible endpoints and A2A (Agent-to-Agent) integration, following the established pattern from CrewAI and LangChain agent implementations.
Agent Specifications
Agent Details
- Name:
beeai-agent
- Framework: IBM BeeAI Framework
- Location:
agent_runtimes/beeai_agent/
- Language: Python 3.11+ with TypeScript support
- Purpose: Demonstrate enterprise-grade multi-agent systems via BeeAI Framework
BeeAI Framework Features
- Multi-Language Support: Python and TypeScript implementations
- Production-Grade: Enterprise-ready with Linux Foundation hosting
- MCP Integration: Native MCP client capabilities
- Multi-Agent Systems: Advanced agent collaboration patterns
- Open Governance: Linux Foundation governance model
Integration Patterns
OpenAI-Compatible Endpoint Integration
# OpenAI API endpoint integration
POST /openai/v1/chat/completions
Content-Type: application/json
Authorization: Bearer ${OPENAI_API_KEY}
{
"model": "gpt-4",
"messages": [
{"role": "user", "content": "Analyze this data using BeeAI multi-agent workflow"}
],
"tools": [
{
"type": "function",
"function": {
"name": "beeai_analyze_data",
"description": "Multi-agent data analysis workflow",
"parameters": {
"type": "object",
"properties": {
"data_source": {"type": "string"},
"analysis_type": {"type": "string"},
"collaboration_mode": {"type": "string"}
}
}
}
}
]
}
A2A (Agent-to-Agent) Integration
# A2A endpoint integration
POST /a2a/v1/agents/{agent_id}/invoke
Content-Type: application/json
Authorization: Bearer ${A2A_API_KEY}
{
"agent_id": "beeai-multi-agent-system",
"input": {
"task": "Collaborative document analysis",
"agents": ["analyst", "reviewer", "summarizer"],
"workflow": "sequential_with_feedback"
},
"context": {
"session_id": "session-123",
"user_id": "user-456"
}
}
Agent Capabilities
1. Multi-Agent Orchestration
- Agent Coordination: Manage multiple specialized agents
- Workflow Patterns: Sequential, parallel, hierarchical execution
- Communication: Inter-agent message passing and state sharing
- Conflict Resolution: Handle agent disagreements and conflicts
2. Production-Grade Features
- Error Handling: Robust error recovery and retry mechanisms
- Monitoring: Comprehensive agent performance tracking
- Scaling: Horizontal scaling of agent systems
- Security: Enterprise security and access controls
3. MCP Tool Integration
- Native MCP Support: Direct integration with MCP servers
- Tool Discovery: Automatic MCP tool discovery and registration
- Context Management: Shared context across agent interactions
- State Persistence: Agent state management and persistence
Implementation Requirements
Directory Structure
agent_runtimes/beeai_agent/
├── src/
│ ├── __init__.py
│ ├── main.py # Main agent runtime
│ ├── beeai_integration/
│ │ ├── __init__.py
│ │ ├── framework_client.py # BeeAI Framework integration
│ │ ├── multi_agent_system.py # Multi-agent orchestration
│ │ └── workflow_engine.py # Agent workflow management
│ ├── agents/
│ │ ├── __init__.py
│ │ ├── base_agent.py # Base BeeAI agent class
│ │ ├── analyst_agent.py # Data analysis agent
│ │ ├── researcher_agent.py # Research and information gathering
│ │ └── coordinator_agent.py # Agent coordination and management
│ ├── endpoints/
│ │ ├── __init__.py
│ │ ├── openai_handler.py # OpenAI-compatible endpoint
│ │ └── a2a_handler.py # A2A endpoint integration
│ ├── tools/
│ │ ├── __init__.py
│ │ ├── mcp_integration.py # MCP tool integration
│ │ └── tool_registry.py # Tool discovery and management
│ └── utils/
│ ├── __init__.py
│ ├── config.py # Configuration management
│ └── monitoring.py # Agent monitoring and metrics
├── tests/
│ ├── unit/
│ ├── integration/
│ └── e2e/
├── config/
│ ├── agent_config.yaml
│ ├── workflow_config.yaml
│ └── integration_config.yaml
├── requirements.txt
├── requirements-dev.txt
├── README.md
├── Dockerfile
├── docker-compose.yml
└── examples/
├── multi_agent_analysis.py
├── workflow_examples.py
└── mcp_integration.py
Core Dependencies
# requirements.txt
# BeeAI Framework
bee-agent-framework>=0.1.0 # or latest version
bee-agent-framework[typescript]
# Core dependencies
fastapi>=0.104.0
uvicorn>=0.24.0
pydantic>=2.5.0
httpx>=0.25.0
websockets>=12.0
redis>=5.0.0
# MCP integration
mcp>=1.0.0
# OpenAI compatibility
openai>=1.3.0
tiktoken>=0.5.0
# Multi-agent coordination
celery>=5.3.0
kombu>=5.3.0
# Monitoring and observability
prometheus-client>=0.19.0
structlog>=23.2.0
Configuration
Agent Configuration
# config/agent_config.yaml
beeai:
framework_version: "latest"
runtime_mode: "production" # development, staging, production
agents:
analyst:
type: "data_analyst"
capabilities: ["data_processing", "statistical_analysis", "visualization"]
model: "gpt-4"
temperature: 0.1
researcher:
type: "research_assistant"
capabilities: ["web_search", "document_analysis", "fact_checking"]
model: "gpt-3.5-turbo"
temperature: 0.3
coordinator:
type: "workflow_coordinator"
capabilities: ["agent_management", "task_distribution", "result_aggregation"]
model: "gpt-4"
temperature: 0.0
workflows:
collaborative_analysis:
agents: ["researcher", "analyst", "coordinator"]
pattern: "sequential_with_feedback"
max_iterations: 3
timeout: 300
mcp_integration:
auto_discover_tools: true
tool_timeout: 30
max_concurrent_tools: 10
Endpoint Configuration
# config/integration_config.yaml
openai_endpoint:
host: "0.0.0.0"
port: 8001
path_prefix: "/openai/v1"
api_key_required: true
rate_limiting:
requests_per_minute: 100
burst_size: 20
a2a_endpoint:
host: "0.0.0.0"
port: 8002
path_prefix: "/a2a/v1"
authentication:
type: "bearer_token"
token_validation: true
monitoring:
metrics_enabled: true
prometheus_port: 8003
log_level: "INFO"
redis:
url: "redis://localhost:6379"
db: 0
key_prefix: "beeai_agent:"
Agent Workflows
Multi-Agent Data Analysis Workflow
# Example workflow implementation
class CollaborativeAnalysisWorkflow:
def __init__(self):
self.researcher = ResearcherAgent()
self.analyst = AnalystAgent()
self.coordinator = CoordinatorAgent()
async def execute(self, task: str) -> Dict[str, Any]:
# Phase 1: Research
research_results = await self.researcher.gather_information(task)
# Phase 2: Analysis
analysis_results = await self.analyst.analyze_data(
data=research_results,
context=task
)
# Phase 3: Coordination and synthesis
final_results = await self.coordinator.synthesize_results(
research=research_results,
analysis=analysis_results
)
return final_results
BeeAI Framework Integration
# BeeAI Framework integration
from bee_agent_framework import Agent, MultiAgentSystem
from bee_agent_framework.integrations.mcp import MCPToolProvider
class BeeAIIntegration:
def __init__(self, config: Dict[str, Any]):
self.config = config
self.multi_agent_system = MultiAgentSystem()
self.mcp_tools = MCPToolProvider()
async def create_agent_system(self) -> MultiAgentSystem:
# Create specialized agents
analyst = Agent(
name="analyst",
role="Data Analyst",
tools=await self.mcp_tools.discover_tools("data_analysis")
)
researcher = Agent(
name="researcher",
role="Research Assistant",
tools=await self.mcp_tools.discover_tools("research")
)
# Add agents to system
self.multi_agent_system.add_agent(analyst)
self.multi_agent_system.add_agent(researcher)
return self.multi_agent_system
OpenAI Integration
Chat Completions Handler
@app.post("/openai/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest):
"""OpenAI-compatible chat completions endpoint"""
# Convert OpenAI request to BeeAI workflow
workflow_task = convert_openai_to_beeai(request)
# Execute multi-agent workflow
results = await beeai_system.execute_workflow(
task=workflow_task,
agents=determine_required_agents(request),
workflow_type=request.get("workflow", "collaborative")
)
# Convert results back to OpenAI format
return format_openai_response(results)
A2A Integration
Agent Invocation Handler
@app.post("/a2a/v1/agents/{agent_id}/invoke")
async def invoke_agent(agent_id: str, request: A2AInvokeRequest):
"""A2A agent invocation endpoint"""
# Get agent configuration
agent_config = get_agent_config(agent_id)
# Execute BeeAI multi-agent workflow
results = await beeai_system.execute_collaborative_task(
task=request.input,
agent_config=agent_config,
context=request.context
)
return A2AResponse(
agent_id=agent_id,
output=results,
metadata={
"execution_time": results.get("execution_time"),
"agents_used": results.get("agents_used"),
"workflow_pattern": results.get("workflow_pattern")
}
)
Advanced Features
Enterprise Capabilities
- High Availability: Multi-instance deployment with load balancing
- Security: Role-based access control and audit logging
- Compliance: Enterprise governance and regulatory compliance
- Integration: Native MCP client with tool auto-discovery
- Monitoring: Comprehensive observability and performance metrics
Multi-Agent Patterns
- Hierarchical: Supervisor-worker agent relationships
- Collaborative: Peer-to-peer agent collaboration
- Pipeline: Sequential agent processing chains
- Swarm: Distributed agent coordination
- Federated: Cross-organization agent collaboration
Testing Strategy
Integration Tests
# Test OpenAI endpoint compatibility
async def test_openai_integration():
client = AsyncOpenAI(base_url="http://localhost:8001/openai/v1")
response = await client.chat.completions.create(
model="beeai-multi-agent",
messages=[{"role": "user", "content": "Analyze sales data trends"}],
tools=[{"type": "function", "function": {"name": "beeai_workflow"}}]
)
assert response.choices[0].message.tool_calls is not None
# Test A2A endpoint
async def test_a2a_integration():
response = await httpx.post(
"http://localhost:8002/a2a/v1/agents/beeai-system/invoke",
json={
"input": {"task": "Multi-agent document analysis"},
"context": {"user_id": "test-user"}
}
)
assert response.status_code == 200
assert "agents_used" in response.json()["metadata"]
Acceptance Criteria
- Python agent runtime using IBM BeeAI Framework
- OpenAI-compatible endpoint (/openai/v1/chat/completions)
- A2A endpoint integration (/a2a/v1/agents/{agent_id}/invoke)
- Multi-agent system orchestration and coordination
- Native MCP client integration with tool discovery
- Production-grade features (monitoring, scaling, security)
- Agent workflow patterns (sequential, parallel, hierarchical)
- Comprehensive configuration management
- Docker containerization support
- Integration tests for both endpoint types
- Performance monitoring and observability
- Complete documentation with workflow examples
Priority
High - Showcases IBM's enterprise-grade multi-agent framework
Dependencies
- IBM BeeAI Framework (Python/TypeScript)
- MCP client library
- FastAPI for endpoint implementation
- Redis for agent coordination
- OpenAI client compatibility
Use Cases
- Enterprise multi-agent workflows
- Collaborative document analysis
- Complex decision-making processes
- Distributed problem solving
- Agent-based automation systems
- Research and analysis pipelines
- Customer service automation
- Business process orchestration
Metadata
Metadata
Assignees
Labels
agentsAgent SamplesAgent SamplesenhancementNew feature or requestNew feature or requestoicOpen Innovation Community ContributionsOpen Innovation Community Contributions