Skip to content

Add getindex for DunklXuDisk and tests #205

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions src/rect.jl
Original file line number Diff line number Diff line change
@@ -1,3 +1,13 @@
"""
KronPolynomial(A, B, C...)

represents the kronecker product of `A`, `B`, …. In particular, if `K = KronPolynomial(A,B)` and `U` is an infinite
matrix of coefficients we have
``
K[SVector(x,y),:]'DiagTrav(U) == A[x,:]'U*B[y,:]
``
"""

struct KronPolynomial{d, T, PP} <: MultivariateOrthogonalPolynomial{d, T}
args::PP
end
Expand Down
18 changes: 18 additions & 0 deletions src/rectdisk.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,10 @@
β::V
end

DunklXuDisk{T}(β) where T = DunklXuDisk{T, typeof(β)}(β)
DunklXuDisk(β::T) where T = DunklXuDisk{float(T), T}(β)
DunklXuDisk() = DunklXuDisk(0)
DunklXuDisk{T}() where T = DunklXuDisk{T}(0)

Check warning on line 13 in src/rectdisk.jl

View check run for this annotation

Codecov / codecov/patch

src/rectdisk.jl#L13

Added line #L13 was not covered by tests

==(D1::DunklXuDisk, D2::DunklXuDisk) = D1.β == D2.β

Expand All @@ -18,6 +20,17 @@
show(io::IO, P::DunklXuDisk) = summary(io, P)
summary(io::IO, P::DunklXuDisk) = print(io, "DunklXuDisk($(P.β))")

function getindex(P::DunklXuDisk{T}, 𝐱::StaticVector{2}, JR::BlockOneTo) where T
x,y = 𝐱
n = Int(last(JR))
ret = zeros(T, n, n)
β = P.β
ρ = sqrt(1-x^2)
for j = 1:n
ret[1:n-j+1,j] = Jacobi{T}(j+β-1/2, j+β-1/2)[x,1:n-j+1] * ρ^(j-1) * Jacobi{T}(β, β)[y/ρ,j]
end
DiagTrav(ret)
end

"""
DunklXuDiskWeight(β)
Expand All @@ -37,6 +50,11 @@
show(io::IO, P::DunklXuDiskWeight) = summary(io, P)
summary(io::IO, P::DunklXuDiskWeight) = print(io, "(1-x^2-y^2)^$(P.β) on the unit disk")

function getindex(P::DunklXuDiskWeight, 𝐱::StaticVector{2})
r = norm(𝐱)
(1-r^2)^P.β
end

const WeightedDunklXuDisk{T} = WeightedBasis{T,<:DunklXuDiskWeight,<:DunklXuDisk}

WeightedDunklXuDisk(β) = DunklXuDiskWeight(β) .* DunklXuDisk(β)
Expand Down
96 changes: 85 additions & 11 deletions test/test_rectdisk.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
using MultivariateOrthogonalPolynomials, StaticArrays, BlockArrays, BlockBandedMatrices, ArrayLayouts, Base64,
QuasiArrays, Test, ClassicalOrthogonalPolynomials, BandedMatrices, FastTransforms, LinearAlgebra
import MultivariateOrthogonalPolynomials: dunklxu_raising, dunklxu_lowering, AngularMomentum
import MultivariateOrthogonalPolynomials: dunklxu_raising, dunklxu_lowering, AngularMomentum, coefficients, basis
using ForwardDiff

@testset "Dunkl-Xu disk" begin
@testset "basics" begin
Expand All @@ -13,6 +14,11 @@ import MultivariateOrthogonalPolynomials: dunklxu_raising, dunklxu_lowering, Ang
@test xy[SVector(0.1,0.2)] == SVector(0.1,0.2)
@test x[SVector(0.1,0.2)] == 0.1
@test y[SVector(0.1,0.2)] == 0.2

ρ = sqrt(1-0.1^2)
@test P[SVector(0.1,0.2),1] ≈ 1
@test P[SVector(0.1,0.2),Block(2)] ≈ [0.15,0.2]
@test P[SVector(0.1,0.2),Block(3)] ≈ [jacobip(2,1/2,1/2,0.1),jacobip(1,3/2,3/2,0.1)*ρ*legendrep(1,0.2/ρ),ρ^2*legendrep(2,0.2/ρ)]
end

@testset "operators" begin
Expand All @@ -28,27 +34,41 @@ import MultivariateOrthogonalPolynomials: dunklxu_raising, dunklxu_lowering, Ang
@test WP == WP

x, y = coordinates(P)

L = WP \ WQ
R = Q \ P

∂x = Derivative(P, (1,0))
∂y = Derivative(P, (0,1))

Dx = Q \ (∂x * P)
Dy = Q \ (∂y * P)

X = P \ (x .* P)
Y = P \ (y .* P)

@test (L * R)[Block.(1:N), Block.(1:N)] ≈ (I - X^2 - Y^2)[Block.(1:N), Block.(1:N)]

@test (DunklXuDisk() \ WeightedDunklXuDisk(1.0))[Block.(1:N), Block.(1:N)] ≈ (WeightedDunklXuDisk(0.0) \ WeightedDunklXuDisk(1.0))[Block.(1:N), Block.(1:N)]
@testset "lowering/raising" begin
@test WP[SVector(0.1,0.2),Block.(1:6)]'L[Block.(1:6),Block.(1:4)] ≈ WQ[SVector(0.1,0.2),Block.(1:4)]'
@test Q[SVector(0.1,0.2),Block.(1:4)]'R[Block.(1:4),Block.(1:4)] ≈ P[SVector(0.1,0.2),Block.(1:4)]'

∂x = Derivative(P, (1,0))
∂y = Derivative(P, (0,1))
@test (DunklXuDisk() \ WeightedDunklXuDisk(1.0))[Block.(1:N), Block.(1:N)] ≈ (WeightedDunklXuDisk(0.0) \ WeightedDunklXuDisk(1.0))[Block.(1:N), Block.(1:N)]
end

Dx = Q \ (∂x * P)
Dy = Q \ (∂y * P)

Mx = Q \ (x .* Q)
My = Q \ (y .* Q)
@testset "jacobi" begin
@test (L * R)[Block.(1:N), Block.(1:N)] ≈ (I - X^2 - Y^2)[Block.(1:N), Block.(1:N)]
@test P[SVector(0.1,0.2),Block.(1:5)]'X[Block.(1:5),Block.(1:4)] ≈ 0.1P[SVector(0.1,0.2),Block.(1:4)]'
@test P[SVector(0.1,0.2),Block.(1:5)]'Y[Block.(1:5),Block.(1:4)] ≈ 0.2P[SVector(0.1,0.2),Block.(1:4)]'
end

@testset "derivatives" begin
@test Q[SVector(0.1,0.2),Block.(1:3)]'Dx[Block.(1:3),Block.(1:4)] ≈ [ForwardDiff.gradient(𝐱 -> DunklXuDisk{eltype(𝐱)}(P.β)[𝐱,k], SVector(0.1,0.2))[1] for k=1:10]'
Mx = Q \ (x .* Q)
My = Q \ (y .* Q)

A = (Mx * Dy - My * Dx)[Block.(1:N), Block.(1:N)]
end

A = (Mx * Dy - My * Dx)[Block.(1:N), Block.(1:N)]

B = (Q \ P)[Block.(1:N), Block.(1:N)]

Expand Down Expand Up @@ -89,4 +109,58 @@ import MultivariateOrthogonalPolynomials: dunklxu_raising, dunklxu_lowering, Ang
@test stringmime("text/plain", DunklXuDisk()) == "DunklXuDisk(0)"
@test stringmime("text/plain", DunklXuDiskWeight(0)) == "(1-x^2-y^2)^0 on the unit disk"
end

@testset "ladder operators" begin
x,y = 𝐱 = SVector(0.1,0.2)
ρ = sqrt(1-x^2)
ρ′ = -x/ρ
n,k = 4,2
β = 0
P = DunklXuDisk(β)
K = Block(n+1)[k+1]
@test P[𝐱,K] ≈ Jacobi(k+1/2,k+1/2)[x,n-k+1] * ρ^k * Legendre()[y/ρ,k+1]
@test Jacobi(k+1/2,k+1/2)[x,n-k+1] * ρ^k * diff(Legendre())[y/ρ,k+1] ≈ ρ * diff(P,(0,1))[𝐱 ,K]
@test diff(Jacobi(k+1/2,k+1/2))[x,n-k+1] * ρ^(k+1) * Legendre()[y/ρ,k+1] ≈ -k*ρ′*P[𝐱,K] + y*ρ′*diff(P,(0,1))[𝐱,K] + ρ * diff(P,(1,0))[𝐱,K]

dunklxudisk(n, k, β, γ, x, y) = jacobip(n-k, k+β+γ+1/2, k+β+γ+1/2, x)* (1-x^2)^(k/2) * jacobip(k, β, β, y/sqrt(1-x^2))

A = coefficients(diff(Jacobi(k+1/2,k+1/2)))
B = Jacobi(1,1)\diff(Legendre())
# M₀₁
@test diff(P,(0,1))[𝐱 ,K] ≈ Jacobi(k-1+3/2,k-1+3/2)[x,n-k+1] * ρ^(k-1) * Jacobi(1,1)[y/ρ,k]B[k,k+1] ≈ DunklXuDisk(1)[𝐱,Block(n)[k]]B[k,k+1] ≈ dunklxudisk(n-1,k-1,1,0,x,y)B[k,k+1]
# M₀₂
@test (k+1)*Legendre()[x,k+1] + (1+x)*diff(Legendre())[x,k+1] ≈ (k+1)*Jacobi(1,0)[x,k+1] #L₄
@test (k+1)*Legendre()[y/ρ,k+1] + (1+y/ρ)*diff(Legendre())[y/ρ,k+1] ≈ (k+1)*Jacobi(1,0)[y/ρ,k+1]
@test (k+1)*P[𝐱,K] + (1+y/ρ)*ρ *diff(P,(0,1))[𝐱 ,K] ≈ (k+1)*Jacobi(k+1/2,k+1/2)[x,n-k+1] * ρ^k * Jacobi(1,0)[y/ρ,k+1]
# M₀₄
@test -(1-x)*(k+1)*Legendre()[x,k+1] - (1-x^2)*diff(Legendre())[x,k+1] ≈ 2*(k+1)*Jacobi(-1,0)[x,k+2] #L₄
@test -(1-y/ρ)*(k+1)*P[𝐱,K] - (1-y^2/ρ^2)*ρ *diff(P,(0,1))[𝐱 ,K] ≈ 2*(k+1)*Jacobi(k+1/2,k+1/2)[x,n-k+1] * ρ^k * Jacobi(-1,0)[y/ρ,k+2]
# M₁₀
@test diff(Jacobi(k+1/2,k+1/2))[x,n-k+1] ≈ (n+k+2)/2 * Jacobi(k+3/2,k+3/2)[x,n-k]
@test 1/ρ * (-k*ρ′*P[𝐱,K] + y*ρ′*diff(P,(0,1))[𝐱,K] + ρ * diff(P,(1,0))[𝐱,K]) ≈ (n+k+2)/2 * Jacobi(k+3/2,k+3/2)[x,n-k] * ρ^k * Legendre()[y/ρ,k+1] ≈ (n+k+2)/2 * dunklxudisk(n-1,k,0,1,x,y)
# M₆₀
@test (k+1/2)*Jacobi(k+1/2,k+1/2)[x,n-k+1] + (1+x)*diff(Jacobi(k+1/2,k+1/2))[x,n-k+1] ≈ (n+1/2)*Jacobi(k+3/2,k-1/2)[x,n-k+1] # L₆
@test (k+1/2)*Jacobi(k+1/2,k+1/2)[x,n-k+1]* ρ^k * Legendre()[y/ρ,k+1] + (1+x)*diff(Jacobi(k+1/2,k+1/2))[x,n-k+1]* ρ^k * Legendre()[y/ρ,k+1] ≈ (n+1/2)*Jacobi(k+3/2,k-1/2)[x,n-k+1]* ρ^k * Legendre()[y/ρ,k+1]
@test (k+1/2)*P[𝐱,K] + (1+x)/ρ*( -k*ρ′*P[𝐱,K] + y*ρ′*diff(P,(0,1))[𝐱,K] + ρ * diff(P,(1,0))[𝐱,K]) ≈ (n+1/2)*Jacobi(k+3/2,k-1/2)[x,n-k+1] * ρ^k * Legendre()[y/ρ,k+1]
# M₀₁'
@test -(1-x^2)*diff(Legendre())[x,k+1] ≈ 2*(k+1)*Jacobi(-1+eps(),-1+eps())[x,k+2] #L₁'
@test -(1-y^2/ρ^2)*diff(Legendre())[y/ρ,k+1] ≈ 2*(k+1)*Jacobi(-1+eps(),-1+eps())[y/ρ,k+2]
@test -(1-y^2/ρ^2)* ρ^2 * diff(P,(0,1))[𝐱 ,K] ≈ 2*(k+1)*Jacobi(k+1/2,k+1/2)[x,n-k+1] * ρ^(k+1) *Jacobi(-1+eps(),-1+eps())[y/ρ,k+2] ≈ 2*(k+1)*dunklxudisk(n+1,k+1,-1+eps(),0,x,y)
# M₀₂'
@test (1-x)*k*Legendre()[x,k+1] - (1-x^2)*diff(Legendre())[x,k+1] ≈ 2*k*Jacobi(-1,0)[x,k+1] #L₂'
@test (1-y/ρ)*k*Legendre()[y/ρ,k+1] - (1-y^2/ρ^2)*diff(Legendre())[y/ρ,k+1] ≈ 2*k*Jacobi(-1,0)[y/ρ,k+1]
@test (1-y/ρ)*k*Jacobi(k+1/2,k+1/2)[x,n-k+1] * ρ^k * Legendre()[y/ρ,k+1] - (1-y^2/ρ^2)*Jacobi(k+1/2,k+1/2)[x,n-k+1] * ρ^k * diff(Legendre())[y/ρ,k+1] ≈ 2*k*Jacobi(k+1/2,k+1/2)[x,n-k+1] * ρ^k * Jacobi(-1,0)[y/ρ,k+1] #L₂'
@test (1-y/ρ)*k*P[𝐱,K] - (1-y^2/ρ^2)*ρ *diff(P,(0,1))[𝐱 ,K] ≈ 2*k*Jacobi(k+1/2,k+1/2)[x,n-k+1] * ρ^k * Jacobi(-1,0)[y/ρ,k+1]
# M₀₄'
@test -k*Legendre()[x,k+1] + (1+x)*diff(Legendre())[x,k+1] ≈ k*Jacobi(1,0)[x,k] #L₄'
@test -k*P[𝐱,K] + (1+y/ρ)*ρ *diff(P,(0,1))[𝐱 ,K] ≈ k*Jacobi(k+1/2,k+1/2)[x,n-k+1] * ρ^k * Jacobi(1,0)[y/ρ,k]
# M₁₀'
@test ((1+x)*(n-k+1/2) - (1-x)*(n-k+1/2))*Jacobi(k+1/2,k+1/2)[x,n-k+1] - (1-x^2)*diff(Jacobi(k+1/2,k+1/2))[x,n-k+1] ≈ 2*(n-k+1)*Jacobi(k-1/2,k-1/2)[x,n-k+2] # L₁'
@test ((1+x)*(n-k+1/2) - (1-x)*(n-k+1/2))*P[𝐱,K] - (1-x^2)/ρ * (-k*ρ′*P[𝐱,K] + y*ρ′*diff(P,(0,1))[𝐱,K] + ρ * diff(P,(1,0))[𝐱,K]) ≈ 2*(n-k+1)*Jacobi(k-1/2,k-1/2)[x,n-k+2]* ρ^k * Legendre()[y/ρ,k+1]
# M₆₀'
@test (k+1/2)*Jacobi(k+1/2,k+1/2)[x,n-k+1]-(1-x)*diff(Jacobi(k+1/2,k+1/2))[x,n-k+1] ≈ (n+1/2)*Jacobi(k-1/2,k+3/2)[x,n-k+1] # L₆'
@test (k+1/2)*P[𝐱,K]-(1-x)/ρ * (-k*ρ′*P[𝐱,K] + y*ρ′*diff(P,(0,1))[𝐱,K] + ρ * diff(P,(1,0))[𝐱,K]) ≈ (n+1/2)*Jacobi(k-1/2,k+3/2)[x,n-k+1]* ρ^k * Legendre()[y/ρ,k+1]

# d/dx = M₁₀M₀₂ + M₀₄'M₆₀'
end
end