Skip to content

Example for Estimating the Fundamental Matrix #29

@RoyiAvital

Description

@RoyiAvital

The Fundamental Matrix, $\boldsymbol{F} \in \mathbb{R}^{3 \times 3}$, is the matrix which given a set of correspondence between 2 images, $\left\{ \left( \boldsymbol{p}_{i}, \boldsymbol{q}_{i} \right) \right\}_{i = 1}^{n}$ , obeys:

$$ \boldsymbol{p}_{i}^{\top} \boldsymbol{F} \boldsymbol{q}_{i} = 0, \; \forall i $$

The Fundamental Matrix must have Rank 2 and by definition is defined up to a scale.

The above can be solved by:

$$ \arg \min_{\boldsymbol{F}} \sum_{i = 1}^{n} {\left( \boldsymbol{p}_{i}^{\top} \boldsymbol{F} \boldsymbol{q}_{i} \right)}^{2}, \; \text{ subject to } \; \boldsymbol{F} \in \mathcal{R}_{2}^{3}, \; {\left\| \boldsymbol{F} \right\|}_{F} = 1 $$

Where $\mathcal{R}_{2}^{3}$ is the set of a $3 \times 3$ matrices with rank 2: $\mathcal{R}_{2}^{3} = \left\{ \boldsymbol{A} \in \mathbb{R}^{3 \times 3} \mid \text{rank} \left( \boldsymbol{A} \right) = 2 \right\}$.

I wonder if such manifold exist?

This is opened after discussion with @kellertuer .

Remark
An extension with solving it with the objective $\arg \min_{\boldsymbol{F}} \sum_{i = 1}^{n} \left| \boldsymbol{p}_{i}^{\top} \boldsymbol{F} \boldsymbol{q}_{i} \right|$ can make it more robust and even a paper worth.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions