The Fundamental Matrix, $\boldsymbol{F} \in \mathbb{R}^{3 \times 3}$, is the matrix which given a set of correspondence between 2 images, $\left\{ \left( \boldsymbol{p}_{i}, \boldsymbol{q}_{i} \right) \right\}_{i = 1}^{n}$ , obeys:
$$ \boldsymbol{p}_{i}^{\top} \boldsymbol{F} \boldsymbol{q}_{i} = 0, \; \forall i $$
The Fundamental Matrix must have Rank 2 and by definition is defined up to a scale.
The above can be solved by:
$$ \arg \min_{\boldsymbol{F}} \sum_{i = 1}^{n} {\left( \boldsymbol{p}_{i}^{\top} \boldsymbol{F} \boldsymbol{q}_{i} \right)}^{2}, \; \text{ subject to } \; \boldsymbol{F} \in \mathcal{R}_{2}^{3}, \; {\left\| \boldsymbol{F} \right\|}_{F} = 1 $$
Where $\mathcal{R}_{2}^{3}$ is the set of a $3 \times 3$ matrices with rank 2: $\mathcal{R}_{2}^{3} = \left\{ \boldsymbol{A} \in \mathbb{R}^{3 \times 3} \mid \text{rank} \left( \boldsymbol{A} \right) = 2 \right\}$.
I wonder if such manifold exist?
This is opened after discussion with @kellertuer .
Remark
An extension with solving it with the objective $\arg \min_{\boldsymbol{F}} \sum_{i = 1}^{n} \left| \boldsymbol{p}_{i}^{\top} \boldsymbol{F} \boldsymbol{q}_{i} \right|$ can make it more robust and even a paper worth.