StereoMamba: Real-time and Robust Intraoperative Stereo Disparity Estimation via Long-range Spatial Dependencies
This work has been accepted in IEEE RAL. Paper link: https://ieeexplore.ieee.org/document/11146458
- Python 3.8+
- PyTorch 2.0+
- CUDA compatible GPU
- VMamba package
- Mamba package
- Create and activate conda environment:
conda create -n stereomamba python=3.8
conda activate stereomamba- Clone and install dependencies:
git clone https://github.com/MichaelWangGo/StereoMamba.git
cd StereoMamba
pip install -r requirements.txt
# Install VMamba
git clone https://github.com/MzeroMiko/VMamba.git
pip install -r requirements.txt
cd kernels/selective_scan && pip install .
# Install Mamba2
git clone https://github.com/state-spaces/mamba.git
pip install .- Download the Sceneflow dataset
- Generate filename paths to .txt file (see
./datasets/filenames/) - Configure dataset paths in
./training_configs/pretrain/config_sceneflow.json:- Set
data_path - Update
trainlistandtestlist
- Set
- Start training:
python -m training_scripts.train_disparity \
--default_config ./training_configs/pretrain/config_sceneflow.json \
--cuda_id 0- Prepare the SCARED dataset using the Unofficial SCARED toolkit
- Configure dataset paths in
./training_configs/fine_tune/config_scared.json - Start finetuning:
python -m training_scripts.train_disparity \
--default_config ./training_configs/fine_tune/config_scared.json \
--cuda_id 0python -m evaluation_scripts.save_disp \
--restore_ckpt <path/to/model> \
--default_config <path/to/config_file> \
--output_directory <output_path> \
--images_filename <path/to/image_list.txt>python -m evaluation_scripts.evaluate_scared \
--predictions <path/to/predictions> \
--ground_truth <path/to/ground_truth> \
--csv <output_results.csv>- Modify the following paths in the script:
left_img_pathright_img_pathdisp_path
- Run evaluation:
python -m evaluation_scripts.reprojection_errorFor dataset preparation and tools:
- Unofficial SCARED toolkit - For generating disparity samples and stereo rectification
