-
Notifications
You must be signed in to change notification settings - Fork 2k
Closed as not planned
Closed as not planned
Copy link
Labels
Missing informationSome key information is missed in the bug reportSome key information is missed in the bug reportNot reproducableThe issue cannot be reproducedThe issue cannot be reproduced
Description
Is there an existing issue for this?
- I have searched the existing issues and checked the recent builds/commits of both this extension and the webui
What happened?
All the Reference Preprocessors are generating errors when I try to use them either with SD1.5 and SDXL models.
Steps to reproduce the problem
I upload picture for reference and adjust the settings, click generate and error message appears. See below
RuntimeError: shape '[81920, 8, 40]' is invalid for input of size 3276800
What should have happened?
It should just work and generate a new reference image output
Commit where the problem happens
webui: version: [v1.7.0-RC-4-g120a84bd]
controlnet: [a13bd2f]
What browsers do you use to access the UI ?
Google Chrome
Command Line Arguments
x-formers
List of enabled extensions
Non applicable
Console logs
RuntimeError: shape '[81920, 8, 40]' is invalid for input of size 3276800
*** Error completing request
*** Arguments: ('task(2bl0opahhbql4kh)', 'Fashion model, Asian ethnicity, futuristic urban wear, metallic accents, sleek lines, white background', '', ['Easy_Bad_NegPrompt'], 30, 'DPM++ 2M SDE Karras', 1, 1, 7, 640, 512, False, 0.7, 2, 'Latent', 0, 0, 0, 'Use same checkpoint', 'Use same sampler', '', '', [], <gradio.routes.Request object at 0x000001CA12ADA560>, 0, -1, False, -1, 0, 0, 0, False, '', 0.8, False, False, False, False, 'base', False, False, {'ad_model': 'face_yolov8n.pt', 'ad_prompt': '', 'ad_negative_prompt': '', 'ad_confidence': 0.3, 'ad_mask_k_largest': 0, 'ad_mask_min_ratio': 0, 'ad_mask_max_ratio': 1, 'ad_x_offset': 0, 'ad_y_offset': 0, 'ad_dilate_erode': 4, 'ad_mask_merge_invert': 'None', 'ad_mask_blur': 4, 'ad_denoising_strength': 0.4, 'ad_inpaint_only_masked': True, 'ad_inpaint_only_masked_padding': 32, 'ad_use_inpaint_width_height': False, 'ad_inpaint_width': 512, 'ad_inpaint_height': 512, 'ad_use_steps': False, 'ad_steps': 28, 'ad_use_cfg_scale': False, 'ad_cfg_scale': 7, 'ad_use_checkpoint': False, 'ad_checkpoint': 'Use same checkpoint', 'ad_use_vae': False, 'ad_vae': 'Use same VAE', 'ad_use_sampler': False, 'ad_sampler': 'Euler a', 'ad_use_noise_multiplier': False, 'ad_noise_multiplier': 1, 'ad_use_clip_skip': False, 'ad_clip_skip': 1, 'ad_restore_face': False, 'ad_controlnet_model': 'None', 'ad_controlnet_module': 'None', 'ad_controlnet_weight': 1, 'ad_controlnet_guidance_start': 0, 'ad_controlnet_guidance_end': 1, 'is_api': ()}, {'ad_model': 'None', 'ad_prompt': '', 'ad_negative_prompt': '', 'ad_confidence': 0.3, 'ad_mask_k_largest': 0, 'ad_mask_min_ratio': 0, 'ad_mask_max_ratio': 1, 'ad_x_offset': 0, 'ad_y_offset': 0, 'ad_dilate_erode': 4, 'ad_mask_merge_invert': 'None', 'ad_mask_blur': 4, 'ad_denoising_strength': 0.4, 'ad_inpaint_only_masked': True, 'ad_inpaint_only_masked_padding': 32, 'ad_use_inpaint_width_height': False, 'ad_inpaint_width': 512, 'ad_inpaint_height': 512, 'ad_use_steps': False, 'ad_steps': 28, 'ad_use_cfg_scale': False, 'ad_cfg_scale': 7, 'ad_use_checkpoint': False, 'ad_checkpoint': 'Use same checkpoint', 'ad_use_vae': False, 'ad_vae': 'Use same VAE', 'ad_use_sampler': False, 'ad_sampler': 'Euler a', 'ad_use_noise_multiplier': False, 'ad_noise_multiplier': 1, 'ad_use_clip_skip': False, 'ad_clip_skip': 1, 'ad_restore_face': False, 'ad_controlnet_model': 'None', 'ad_controlnet_module': 'None', 'ad_controlnet_weight': 1, 'ad_controlnet_guidance_start': 0, 'ad_controlnet_guidance_end': 1, 'is_api': ()}, False, 'MultiDiffusion', False, True, 1024, 1024, 96, 96, 48, 4, 'None', 2, False, 10, 1, 1, 64, False, False, False, False, False, 0.4, 0.4, 0.2, 0.2, '', '', 'Background', 0.2, -1.0, False, 0.4, 0.4, 0.2, 0.2, '', '', 'Background', 0.2, -1.0, False, 0.4, 0.4, 0.2, 0.2, '', '', 'Background', 0.2, -1.0, False, 0.4, 0.4, 0.2, 0.2, '', '', 'Background', 0.2, -1.0, False, 0.4, 0.4, 0.2, 0.2, '', '', 'Background', 0.2, -1.0, False, 0.4, 0.4, 0.2, 0.2, '', '', 'Background', 0.2, -1.0, False, 0.4, 0.4, 0.2, 0.2, '', '', 'Background', 0.2, -1.0, False, 0.4, 0.4, 0.2, 0.2, '', '', 'Background', 0.2, -1.0, False, 3072, 192, True, True, True, False, False, 7, 100, 'Constant', 0, 'Constant', 0, 4, True, 'MEAN', 'AD', 1, UiControlNetUnit(enabled=True, module='reference_adain+attn', model='None', weight=1, image={'image': array([[[193, 193, 194],
*** [193, 193, 196],
*** [191, 192, 194],
*** ...,
*** [183, 184, 183],
*** [182, 184, 184],
*** [183, 182, 183]],
***
*** [[192, 191, 193],
*** [193, 193, 195],
*** [193, 191, 195],
*** ...,
*** [183, 183, 184],
*** [183, 183, 184],
*** [182, 182, 184]],
***
*** [[191, 190, 193],
*** [191, 192, 193],
*** [193, 193, 194],
*** ...,
*** [184, 184, 185],
*** [183, 184, 183],
*** [184, 182, 183]],
***
*** ...,
***
*** [[225, 224, 229],
*** [224, 223, 228],
*** [224, 224, 227],
*** ...,
*** [223, 225, 228],
*** [222, 224, 227],
*** [223, 223, 228]],
***
*** [[225, 225, 229],
*** [224, 224, 227],
*** [224, 224, 228],
*** ...,
*** [221, 223, 225],
*** [221, 222, 225],
*** [222, 223, 226]],
***
*** [[225, 224, 229],
*** [224, 224, 229],
*** [225, 223, 230],
*** ...,
*** [223, 223, 227],
*** [222, 224, 226],
*** [222, 222, 224]]], dtype=uint8), 'mask': array([[[0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0],
*** ...,
*** [0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0]],
***
*** [[0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0],
*** ...,
*** [0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0]],
***
*** [[0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0],
*** ...,
*** [0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0]],
***
*** ...,
***
*** [[0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0],
*** ...,
*** [0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0]],
***
*** [[0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0],
*** ...,
*** [0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0]],
***
*** [[0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0],
*** ...,
*** [0, 0, 0],
*** [0, 0, 0],
*** [0, 0, 0]]], dtype=uint8)}, resize_mode='Crop and Resize', low_vram=False, processor_res=-1, threshold_a=0.5, threshold_b=-1, guidance_start=0, guidance_end=1, pixel_perfect=False, control_mode='Balanced', save_detected_map=True), UiControlNetUnit(enabled=False, module='none', model='None', weight=1, image=None, resize_mode='Crop and Resize', low_vram=False, processor_res=64, threshold_a=64, threshold_b=64, guidance_start=0, guidance_end=1, pixel_perfect=False, control_mode='Balanced', save_detected_map=True), UiControlNetUnit(enabled=False, module='none', model='None', weight=1, image=None, resize_mode='Crop and Resize', low_vram=False, processor_res=64, threshold_a=64, threshold_b=64, guidance_start=0, guidance_end=1, pixel_perfect=False, control_mode='Balanced', save_detected_map=True), UiControlNetUnit(enabled=False, module='none', model='None', weight=1, image=None, resize_mode='Crop and Resize', low_vram=False, processor_res=64, threshold_a=64, threshold_b=64, guidance_start=0, guidance_end=1, pixel_perfect=False, control_mode='Balanced', save_detected_map=True), False, True, 3, 4, 0.15, 0.3, 'bicubic', 0.5, 2, True, False, False, False, 'Matrix', 'Columns', 'Mask', 'Prompt', '1,1', '0.2', False, False, False, 'Attention', [False], '0', '0', '0.4', None, '0', '0', False, None, False, '0', '0', 'inswapper_128.onnx', 'CodeFormer', 1, True, 'None', 1, 1, False, True, 1, 0, 0, False, 0.5, True, False, 'CUDA', False, 0, 'None', '', None, False, False, 0, None, [], 0, False, [], [], False, 0, 1, False, False, 0, None, [], -2, False, [], False, 0, None, None, False, False, 'positive', 'comma', 0, False, False, 'start', '', 1, '', [], 0, '', [], 0, '', [], True, False, False, False, 0, False, None, None, False, None, None, False, None, None, False, None, None, False, 50, [], 30, '', 4, [], 1, '', '', '', '') {}
Traceback (most recent call last):
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\modules\call_queue.py", line 57, in f
res = list(func(*args, **kwargs))
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\modules\call_queue.py", line 36, in f
res = func(*args, **kwargs)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\modules\txt2img.py", line 55, in txt2img
processed = processing.process_images(p)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\modules\processing.py", line 734, in process_images
res = process_images_inner(p)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\extensions\sd-webui-controlnet\scripts\batch_hijack.py", line 42, in processing_process_images_hijack
return getattr(processing, '__controlnet_original_process_images_inner')(p, *args, **kwargs)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\modules\processing.py", line 868, in process_images_inner
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\extensions\sd-webui-controlnet\scripts\hook.py", line 423, in process_sample
return process.sample_before_CN_hack(*args, **kwargs)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\modules\processing.py", line 1142, in sample
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\modules\sd_samplers_kdiffusion.py", line 235, in sample
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\modules\sd_samplers_common.py", line 261, in launch_sampling
return func()
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\modules\sd_samplers_kdiffusion.py", line 235, in <lambda>
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\repositories\k-diffusion\k_diffusion\sampling.py", line 626, in sample_dpmpp_2m_sde
denoised = model(x, sigmas[i] * s_in, **extra_args)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\modules\sd_samplers_cfg_denoiser.py", line 169, in forward
x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in))
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\repositories\k-diffusion\k_diffusion\external.py", line 112, in forward
eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\repositories\k-diffusion\k_diffusion\external.py", line 138, in get_eps
return self.inner_model.apply_model(*args, **kwargs)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\modules\sd_hijack_utils.py", line 17, in <lambda>
setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\modules\sd_hijack_utils.py", line 28, in __call__
return self.__orig_func(*args, **kwargs)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 858, in apply_model
x_recon = self.model(x_noisy, t, **cond)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 1335, in forward
out = self.diffusion_model(x, t, context=cc)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\extensions\sd-webui-controlnet\scripts\hook.py", line 840, in forward_webui
raise e
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\extensions\sd-webui-controlnet\scripts\hook.py", line 837, in forward_webui
return forward(*args, **kwargs)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\extensions\sd-webui-controlnet\scripts\hook.py", line 722, in forward
outer.original_forward(
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\modules\sd_unet.py", line 91, in UNetModel_forward
return original_forward(self, x, timesteps, context, *args, **kwargs)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py", line 797, in forward
h = module(h, emb, context)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py", line 84, in forward
x = layer(x, context)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 334, in forward
x = block(x, context=context[i])
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 269, in forward
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\util.py", line 121, in checkpoint
return CheckpointFunction.apply(func, len(inputs), *args)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\venv\lib\site-packages\torch\autograd\function.py", line 506, in apply
return super().apply(*args, **kwargs) # type: ignore[misc]
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\util.py", line 136, in forward
output_tensors = ctx.run_function(*ctx.input_tensors)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\extensions\sd-webui-controlnet\scripts\hook.py", line 884, in hacked_basic_transformer_inner_forward
self_attn1 = self.attn1(x_norm1, context=self_attention_context)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\extensions-builtin\hypertile\hypertile.py", line 307, in wrapper
out = params.forward(x, *args[1:], **kwargs)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\modules\sd_hijack_optimizations.py", line 496, in xformers_attention_forward
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=get_xformers_flash_attention_op(q, k, v))
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\venv\lib\site-packages\xformers\ops\fmha\__init__.py", line 192, in memory_efficient_attention
return _memory_efficient_attention(
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\venv\lib\site-packages\xformers\ops\fmha\__init__.py", line 290, in _memory_efficient_attention
return _memory_efficient_attention_forward(
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\venv\lib\site-packages\xformers\ops\fmha\__init__.py", line 310, in _memory_efficient_attention_forward
out, *_ = op.apply(inp, needs_gradient=False)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\venv\lib\site-packages\xformers\ops\fmha\flash.py", line 235, in apply
) = _convert_input_format(inp)
File "C:\Users\xxxxx\Documents\WebUI-Stable-Diffusion\stable-diffusion-webui\venv\lib\site-packages\xformers\ops\fmha\flash.py", line 177, in _convert_input_format
key=key.reshape([batch * seqlen_kv, num_heads, head_dim_q]),
RuntimeError: shape '[81920, 8, 40]' is invalid for input of size 3276800
Additional information
No response
Metadata
Metadata
Assignees
Labels
Missing informationSome key information is missed in the bug reportSome key information is missed in the bug reportNot reproducableThe issue cannot be reproducedThe issue cannot be reproduced