Skip to content
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions python/paddle/nn/functional/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -159,6 +159,7 @@
from .loss import ctc_loss #DEFINE_ALIAS
# from .norm import data_norm #DEFINE_ALIAS
# from .norm import group_norm #DEFINE_ALIAS
from .norm import l2_normalize #DEFINE_ALIAS
from .norm import batch_norm #DEFINE_ALIAS
from .norm import instance_norm #DEFINE_ALIAS
from .norm import layer_norm #DEFINE_ALIAS
Expand Down
10 changes: 5 additions & 5 deletions python/paddle/nn/functional/norm.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,8 +139,8 @@ def batch_norm(x,
epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
training(bool, optional): True means train mode which compute by batch data and track global mean and var during train period. False means inference mode which compute by global mean and var which calculated by train period. Defalut False.
data_format(str, optional): Specify the input data format. Defalut "NCHW".
name(str, optional): Default: None.
data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW" or "NCDHW". Defalut "NCHW".
name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

Returns:
None
Expand Down Expand Up @@ -250,7 +250,7 @@ def layer_norm(x,
division by zero. Default: 1e-05.
weight(Tensor, optional): The weight tensor of batch_norm. Default: None.
bias(Tensor, optional): The bias tensor of batch_norm. Default: None.
name(str, optional): Default None.
name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

Returns:
None
Expand Down Expand Up @@ -342,8 +342,8 @@ def instance_norm(x,
eps(float, optional): A value added to the denominator for numerical stability. Default is 1e-5.
momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
use_input_stats(bool): Default True.
data_format(str, optional): Specify the input data format. Default: NCHW.
name(str, optional): Default None.
data_format(str, optional): Specify the input data format, may be "NC", "NCL", "NCHW" or "NCDHW". Defalut "NCHW".
name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

Returns:
None.
Expand Down
268 changes: 244 additions & 24 deletions python/paddle/nn/layer/norm.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,17 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
Expand All @@ -14,7 +27,6 @@

# TODO: define normalization api

import warnings
from ...fluid.dygraph.nn import InstanceNorm

from ...fluid.dygraph import BatchNorm #DEFINE_ALIAS
Expand All @@ -23,14 +35,6 @@
#from ...fluid.dygraph import LayerNorm #DEFINE_ALIAS
from ...fluid.dygraph import SpectralNorm #DEFINE_ALIAS

from ...fluid.dygraph import layers
from ...fluid.framework import in_dygraph_mode

from ...fluid.initializer import Constant
from ...fluid.param_attr import ParamAttr
from ...fluid.data_feeder import check_variable_and_dtype, check_type
from ...fluid import core

from ...fluid.dygraph import layers

from ...framework import get_default_dtype, set_default_dtype
Expand Down Expand Up @@ -142,8 +146,8 @@ class InstanceNorm1d(_InstanceNormBase):
will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
If the Initializer of the bias_attr is not set, the bias is initialized zero.
If it is set to False, will not create bias_attr. Default: None.
data_format(str, optional): Specify the input data format. Default: NCL.
name(str, optional): Default None.
data_format(str, optional): Specify the input data format, may be "NC", "NCL". Defalut "NCL".
name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..


Shape:
Expand Down Expand Up @@ -221,8 +225,8 @@ class InstanceNorm2d(_InstanceNormBase):
will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
If the Initializer of the bias_attr is not set, the bias is initialized zero.
If it is set to False, will not create bias_attr. Default: None.
data_format(str, optional): Specify the input data format. Default: NCHW.
name(str, optional): Default None.
data_format(str, optional): Specify the input data format, could be "NCHW". Default: NCHW.
name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

Shape:
- x: 4-D tensor with shape: (batch, num_features, height, weight).
Expand Down Expand Up @@ -297,8 +301,8 @@ class InstanceNorm3d(_InstanceNormBase):
will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
If the Initializer of the bias_attr is not set, the bias is initialized zero.
If it is set to False, will not create bias_attr. Default: None.
data_format(str, optional): Specify the input data format. Default: NCDHW.
name(str, optional): Default None.
data_format(str, optional): Specify the input data format, could be "NCDHW". Default: NCDHW.
name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

Shape:
- x: 5-D tensor with shape: (batch, num_features, dims, height, weight).
Expand Down Expand Up @@ -352,7 +356,7 @@ class GroupNorm(layers.Layer):
bias :math:`b`. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero. Default: None.
data_format(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.
name(str, optional): Default None.
name(str, optional): Name for the GroupNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

Shape:
- x: 4-D tensor with shape: (batch, num_features, height, weight).
Expand Down Expand Up @@ -472,7 +476,7 @@ class LayerNorm(layers.Layer):
bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
bias :math:`b`. If is False, bias is None. If is None, a default :code:`ParamAttr` would be added as bias. The
:attr:`bias_attr` is initialized as 0 if it is added. Default: None.
name(str, optional): parameter name. Default None.
name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

Shape:
- x: 2-D, 3-D, 4-D or 5-D tensor.
Expand Down Expand Up @@ -621,7 +625,7 @@ def forward(self, input):

if self.training and not self._track_running_stats:
warnings.warn(
"When training, we now also track global mean and variance.")
"When training, we now always track global mean and variance.")

return batch_norm(
input,
Expand Down Expand Up @@ -683,11 +687,11 @@ class BatchNorm1d(_BatchNormBase):
If it is set to None or one attribute of ParamAttr, batch_norm
will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
data_format(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
data_format(str, optional): Specify the input data format, may be "NC", "NCL". Defalut "NCL".
track_running_stats(bool, optional): Whether to use global mean and variance. In train period,
True will track global mean and variance used for inference. When inference, track_running_stats must be
True. Default: True.
name(str, optional): Default: None.
name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

Shape:
- x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length).
Expand Down Expand Up @@ -774,7 +778,7 @@ class BatchNorm2d(_BatchNormBase):
track_running_stats(bool, optional): Whether to use global mean and variance. In train period,
True will track global mean and variance used for inference. When inference, track_running_stats must be
True. Default: True.
name(str, optional): Default: None.
name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

Shape:
- x: 4-D tensor with shape: (batch, num_features, height, weight).
Expand Down Expand Up @@ -856,11 +860,11 @@ class BatchNorm3d(_BatchNormBase):
If it is set to None or one attribute of ParamAttr, batch_norm
will create ParamAttr as bias_attr. If it is set to Fasle, the weight is not learnable.
If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
data_format(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
data_format(str, optional): Specify the input data format, the data format can be "NCDHW". Default: NCDHW.
track_running_stats(bool, optional): Whether to use global mean and variance. In train period,
True will track global mean and variance used for inference. When inference, track_running_stats must be
True. Default: True.
name(str, optional): Default: None.
name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

Shape:
- x: 5-D tensor with shape: (batch, num_features, dims, height, weight).
Expand Down Expand Up @@ -892,3 +896,219 @@ def _check_input_dim(self, input):
if len(input.shape) != 5:
raise ValueError('expected 5D input (got {}D input)'.format(
len(input.shape)))


class SyncBatchNorm(layers.Layer):
"""
This interface is used to construct a callable object of the ``SyncBatchNorm`` class.
It implements the function of the Cross-GPU Synchronized Batch Normalization Layer, and can
be used as a normalizer function for other operations, such as conv2d and fully connected
operations.
The data is normalized by the mean and variance of the channel based on whole mini-batch
, which including data in all gpus.
Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
for more details.

When model in training mode, the :math:`\\mu_{\\beta}`
and :math:`\\sigma_{\\beta}^{2}` are the statistics of whole mini-batch data in all gpus.
Calculated as follows:

.. math::

\\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
\ mini-batch\ mean \\\\
\\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
\\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

- :math:`x` : whole mini-batch data in all gpus
- :math:`m` : the size of the whole mini-batch data

When model in evaluation mode, the :math:`\\mu_{\\beta}`
and :math:`\\sigma_{\\beta}^{2}` are global statistics (moving_mean and moving_variance,
which usually got from the pre-trained model). Global statistics calculated as follows:

.. math::
moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\

The formula of normalization is as follows:

.. math::

\\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
\\sigma_{\\beta}^{2} + \\eps}} \\qquad &//\ normalize \\\\
y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

- :math:`\\eps` : add a smaller value to the variance to prevent division by zero
- :math:`\\gamma` : trainable scale parameter vector
- :math:`\\beta` : trainable shift parameter vector

Parameters:
num_features(int): Indicate the number of channels of the input ``Tensor``.
epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
of this layer. If it is set to None or one attribute of ParamAttr, this layerr
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. If it is set to False,
this layer will not have trainable scale parameter. Default: None.
bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of this layer.
If it is set to None or one attribute of ParamAttr, this layer
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. If it is set to False, this layer will not
have trainable bias parameter. Default: None.
track_running_stats(bool, optional): Whether to compute global stats, which including running mean and
running variance. Default: True.

Shapes:
input: Tensor that the dimension from 2 to 5.
output: Tensor with the same shape as input.

Examples:
.. code-block:: python

import paddle
import paddle.nn as nn
import numpy as np

x = np.array([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]]).astype('float32')
paddle.disable_static()
x = paddle.to_tensor(x)
if paddle.fluid.is_compiled_with_cuda():
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

probably we need to make is_compiled_with_cuda visible to users via :paddle.is_compiled_with_cuda

sync_batch_norm = nn.SyncBatchNorm(2)
hidden1 = sync_batch_norm(x)
print(hidden1.numpy())
# [[[[0.26824948, 1.0936325],[0.26824948, -1.6301316]],[[ 0.8095662, -0.665287],[-1.2744656, 1.1301866 ]]]]
"""

def __init__(self,
num_features,
epsilon=1e-05,
momentum=0.9,
track_running_stats=True,
weight_attr=None,
bias_attr=None,
data_format='NCHW',
name=None):
super(SyncBatchNorm, self).__init__()
self._weight_attr = weight_attr
self._bias_attr = bias_attr
self._num_features = num_features
self._data_layout = data_format
self._momentum = momentum
self._epsilon = epsilon
self._track_running_stats = track_running_stats

if self._track_running_stats == False:
warnings.warn(
"moving mean and moving variance will be calculated whether `track_running_stats` is set to `True` or `False`, we will fix it in the next version."
)

param_shape = [self._num_features]

# create parameter
if weight_attr == False:
self.weight = self.create_parameter(
attr=None, shape=param_shape, default_initializer=Constant(1.0))
self.weight.stop_gradient = True
else:
self.weight = self.create_parameter(
attr=self._weight_attr,
shape=param_shape,
default_initializer=Constant(1.0))
self.weight.stop_gradient = self._weight_attr != None and self._weight_attr.learning_rate == 0.

if bias_attr == False:
self.bias = self.create_parameter(
attr=None,
shape=param_shape,
default_initializer=Constant(0.0),
is_bias=True)
self.bias.stop_gradient = True
else:
self.bias = self.create_parameter(
attr=self._bias_attr, shape=param_shape, is_bias=True)
self.bias.stop_gradient = self._weight_attr != None and self._weight_attr.learning_rate == 0.

self._mean = self.create_parameter(
attr=ParamAttr(
name=None,
initializer=Constant(0.0),
trainable=False,
do_model_average=True),
shape=param_shape,
dtype=self._dtype)
self._mean.stop_gradient = True

self._variance = self.create_parameter(
attr=ParamAttr(
name=None,
initializer=Constant(1.0),
trainable=False,
do_model_average=True),
shape=param_shape,
dtype=self._dtype)
self._variance.stop_gradient = True

def forward(self, x):
# create output
# mean and mean_out share the same memory
mean_out = self._mean
# variance and variance out share the same memory
variance_out = self._variance

### train mode: use mini-batch stats, eval mode: use global stats
### use_global_stats only support False in sync_batch_norm
if in_dygraph_mode():
attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
"is_test", not self.training, "data_layout",
self._data_layout, "use_mkldnn", False, "fuse_with_relu",
False, "use_global_stats", False, 'trainable_statistics',
False)
sync_batch_norm_out, _, _, _, _, _ = core.ops.sync_batch_norm(
x, self.weight, self.bias, self._mean, self._variance, mean_out,
variance_out, *attrs)

return sync_batch_norm_out

check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
'BatchNorm')

attrs = {
"momentum": self._momentum,
"epsilon": self._epsilon,
"is_test": not self.training,
"data_layout": self._data_layout,
"use_mkldnn": False,
"fuse_with_relu": False,
"use_global_stats": False,
"trainable_statistics": False,
}

inputs = {
"X": [x],
"Scale": [self.weight],
"Bias": [self.bias],
"Mean": [self._mean],
"Variance": [self._variance]
}

saved_mean = self._helper.create_variable_for_type_inference(
dtype=self._dtype, stop_gradient=True)
saved_variance = self._helper.create_variable_for_type_inference(
dtype=self._dtype, stop_gradient=True)
sync_batch_norm_out = self._helper.create_variable_for_type_inference(
self._dtype)

outputs = {
"Y": [sync_batch_norm_out],
"MeanOut": [mean_out],
"VarianceOut": [variance_out],
"SavedMean": [saved_mean],
"SavedVariance": [saved_variance]
}

self._helper.append_op(
type="sync_batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
return sync_batch_norm_out