-
Notifications
You must be signed in to change notification settings - Fork 5.9k
Add sequence concat op #4508
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Add sequence concat op #4508
Changes from all commits
Commits
Show all changes
11 commits
Select commit
Hold shift + click to select a range
be3fa79
add sequence concat op
Yancey0623 a35e82a
Merge branch 'develop' of github.com:PaddlePaddle/Paddle into seqconc…
Yancey0623 927767b
add some checking
Yancey0623 0028459
update
Yancey0623 d211b51
update comment
Yancey0623 a4d410a
Merge branch 'develop' of github.com:PaddlePaddle/Paddle into seqconc…
Yancey0623 462579c
update
Yancey0623 e880a35
update
Yancey0623 ad477b9
update
Yancey0623 69e92b3
add an enforce
Yancey0623 d68122f
update
Yancey0623 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,129 @@ | ||
| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
|
||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||
| you may not use this file except in compliance with the License. | ||
| You may obtain a copy of the License at | ||
|
|
||
| http://www.apache.org/licenses/LICENSE-2.0 | ||
|
|
||
| Unless required by applicable law or agreed to in writing, software | ||
| distributed under the License is distributed on an "AS IS" BASIS, | ||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| See the License for the specific language governing permissions and | ||
| limitations under the License. */ | ||
|
|
||
| #include "paddle/operators/sequence_concat_op.h" | ||
|
|
||
| namespace paddle { | ||
| namespace operators { | ||
|
|
||
| class SequenceConcatOp : public framework::OperatorWithKernel { | ||
| public: | ||
| using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
|
||
| protected: | ||
| void InferShape(framework::InferShapeContext* ctx) const override { | ||
| PADDLE_ENFORCE(ctx->HasInputs("X"), | ||
| "Inputs(X) of SequenceConcatOp should not be null."); | ||
| PADDLE_ENFORCE(ctx->HasOutput("Out"), | ||
| "Output(Out) of SequenceConcatOp should not be null."); | ||
| const size_t level = static_cast<size_t>(ctx->Attrs().Get<int>("level")); | ||
| const size_t axis = static_cast<size_t>(ctx->Attrs().Get<int>("axis")); | ||
| PADDLE_ENFORCE(level == 0UL || level == 1UL, | ||
| "The sequence_concat operator only accepts sequence " | ||
| "or a nested sequence as its input."); | ||
| auto ins_dims = ctx->GetInputsDim("X"); | ||
| framework::DDim out_dims = ins_dims[0]; | ||
| const size_t n = ins_dims.size(); | ||
| for (size_t i = 1; i < n; ++i) { | ||
| out_dims[axis] += ins_dims[i][axis]; | ||
| } | ||
| ctx->SetOutputDim("Out", out_dims); | ||
| } | ||
| }; | ||
|
|
||
| class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker { | ||
| public: | ||
| SequenceConcatOpMaker(framework::OpProto* proto, | ||
| framework::OpAttrChecker* op_checker) | ||
| : OpProtoAndCheckerMaker(proto, op_checker) { | ||
| AddInput("X", | ||
| "(A vector of LoDTensor), the input is a vector of LoDTensor, " | ||
| "each of which is a variable-length sequence or nested sequence.") | ||
| .AsDuplicable(); | ||
| AddOutput("Out", | ||
| "(A LoDTensor), the variable-length output of " | ||
| "sequence_concat Op."); | ||
| AddAttr<int>("axis", | ||
| "(int, default 0)" | ||
| "The axis which the inputs will be joined with. " | ||
| "If axis is 0, the inputs will be joined with LoD index.") | ||
| .SetDefault(0); | ||
| AddAttr<int>("level", | ||
| "(int, default 0)" | ||
| "The level at which the inputs will be joined. " | ||
| "If the level is 0, the inputs will be joined at the nested " | ||
| "sequence level. " | ||
| "If the level is 1, the inputs will be joined at the " | ||
| "sequence level. " | ||
| "The level should be less than the level number of inputs.") | ||
| .SetDefault(0); | ||
| AddComment(R"DOC( | ||
| The sequence_concat operator concatenates multiple LoDTensors. | ||
| It only supports sequence (LoD Tensor with level number is 1) | ||
| or a nested sequence (LoD tensor with level number is 2) as its input. | ||
| - Case1: | ||
| If the axis is other than 0(here, axis is 1 and level is 1), | ||
| each input should have the same LoD information and the LoD | ||
| information of the output keeps the same as the input. | ||
|
|
||
| LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4) | ||
| LoD(x1) = {{0,2,4}, {0,1,2,3,4}}; Dims(x1) = (4,4,4) | ||
| LoD(Out) = {{0,2,4}, {0,1,2,3,4}}; Dims(Out) = (4,7,4) | ||
|
|
||
| - Case2: | ||
| If the axis is 0(here, leve is 0), the inputs are concatenated along | ||
| time steps, the LoD information of the output need to re-compute. | ||
|
|
||
| LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4) | ||
| LoD(x1) = {{0,3,5}, {0,1,2,3,5}}; Dims(x1) = (5,3,4) | ||
| LoD(Out) = {{0,5,9}, {0,1,2,3,4,5,6,7,9}}; Dims(Out) = (9,3,4) | ||
|
|
||
| - Case3: | ||
| If the axis is 0(here, level is 1). | ||
|
|
||
| LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4) | ||
| LoD(x1) = {{0,3,5}, {0,1,3,4,5}}; Dims(x1) = (5,3,4) | ||
| LoD(Out) = {{0,5,9}, {0,2,5,7,9}}; Dims(Out) = (9,3,4) | ||
|
|
||
| NOTE: The levels of all the inputs should be the same. | ||
| )DOC"); | ||
| } | ||
| }; | ||
|
|
||
| class SequenceConcatGradOp : public framework::OperatorWithKernel { | ||
| public: | ||
| using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
|
||
| protected: | ||
| void InferShape(framework::InferShapeContext* ctx) const override { | ||
| PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), | ||
| "The gradient of Out should not be null."); | ||
| PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName("X")), | ||
| "The gradient of X should not be null."); | ||
| ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X")); | ||
| } | ||
| }; | ||
|
|
||
| } // namespace operators | ||
| } // namespace paddle | ||
|
|
||
| namespace ops = paddle::operators; | ||
| REGISTER_OP(sequence_concat, ops::SequenceConcatOp, ops::SequenceConcatOpMaker, | ||
| sequence_concat_grad, ops::SequenceConcatGradOp); | ||
| REGISTER_OP_CPU_KERNEL( | ||
| sequence_concat, | ||
| ops::SequenceConcatOpKernel<paddle::platform::CPUPlace, float>); | ||
| REGISTER_OP_CPU_KERNEL( | ||
| sequence_concat_grad, | ||
| ops::SequenceConcatGradOpKernel<paddle::platform::CPUPlace, float>); | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,25 @@ | ||
| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
|
||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||
| you may not use this file except in compliance with the License. | ||
| You may obtain a copy of the License at | ||
|
|
||
| http://www.apache.org/licenses/LICENSE-2.0 | ||
|
|
||
| Unless required by applicable law or agreed to in writing, software | ||
| distributed under the License is distributed on an "AS IS" BASIS, | ||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| See the License for the specific language governing permissions and | ||
| limitations under the License. */ | ||
|
|
||
| #define EIGEN_USE_GPU | ||
|
|
||
| #include "paddle/operators/sequence_concat_op.h" | ||
|
|
||
| namespace ops = paddle::operators; | ||
| REGISTER_OP_GPU_KERNEL( | ||
| sequence_concat, | ||
| ops::SequenceConcatOpKernel<paddle::platform::GPUPlace, float>); | ||
| REGISTER_OP_GPU_KERNEL( | ||
| sequence_concat_grad, | ||
| ops::SequenceConcatGradOpKernel<paddle::platform::GPUPlace, float>); |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,155 @@ | ||
| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
|
||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||
| you may not use this file except in compliance with the License. | ||
| You may obtain a copy of the License at | ||
|
|
||
| http://www.apache.org/licenses/LICENSE-2.0 | ||
|
|
||
| Unless required by applicable law or agreed to in writing, software | ||
| distributed under the License is distributed on an "AS IS" BASIS, | ||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| See the License for the specific language governing permissions and | ||
| limitations under the License. */ | ||
|
|
||
| #pragma once | ||
| #include "paddle/framework/op_registry.h" | ||
| #include "paddle/operators/strided_memcpy.h" | ||
|
|
||
| namespace paddle { | ||
| namespace operators { | ||
|
|
||
| using Tensor = framework::Tensor; | ||
| using LoDTensor = framework::LoDTensor; | ||
| using LoD = framework::LoD; | ||
|
|
||
| template <typename T> | ||
| LoD concatLoD(const std::vector<const T*> ins, const size_t axis, | ||
| const size_t level) { | ||
| auto out_lod = ins[0]->lod(); | ||
| const size_t n = ins.size(); | ||
| if (axis == 0UL) { | ||
| for (size_t i = 1; i < n; ++i) { | ||
| for (size_t j = 0; j < ins[i]->lod()[0].size(); ++j) { | ||
| out_lod[0][j] += ins[i]->lod()[0][j]; | ||
| } | ||
|
|
||
| if (ins[0]->NumLevels() == 2) { | ||
| for (size_t j = 1; j < ins[i]->lod()[1].size(); ++j) { | ||
| if (level == 0UL) { | ||
| out_lod[1].push_back(out_lod[1].back() + ins[i]->lod()[1][j] - | ||
| ins[i]->lod()[1][j - 1]); | ||
| } else if (level == 1UL) { | ||
| out_lod[1][j] += ins[1]->lod()[1][j]; | ||
| } | ||
| } | ||
| } | ||
| } | ||
| } | ||
| return out_lod; | ||
| } | ||
|
|
||
| template <typename Place, typename T> | ||
| class SequenceConcatOpKernel : public framework::OpKernel<T> { | ||
| public: | ||
| void Compute(const framework::ExecutionContext& ctx) const override { | ||
| auto ins = ctx.MultiInput<LoDTensor>("X"); | ||
| auto* out = ctx.Output<LoDTensor>("Out"); | ||
| const size_t axis = static_cast<size_t>(ctx.Attr<int>("axis")); | ||
| const size_t level = static_cast<size_t>(ctx.Attr<int>("level")); | ||
| const size_t n = ins.size(); | ||
|
|
||
| for (size_t i = 1; i < n; ++i) { | ||
| PADDLE_ENFORCE_EQ(ins[0]->NumLevels(), ins[i]->NumLevels(), | ||
| "The levels of all the input LoDTensors " | ||
| "should be the same."); | ||
| PADDLE_ENFORCE_EQ(ins[0]->dims().size(), ins[i]->dims().size(), | ||
| "The dimension size of all the input LoDTensors " | ||
| "should be the same."); | ||
|
|
||
| const size_t dims_size = ins[i]->dims().size(); | ||
| for (size_t j = 0; j < dims_size; ++j) { | ||
| if (j == axis) continue; | ||
| PADDLE_ENFORCE_EQ(ins[0]->dims()[j], ins[i]->dims()[j], | ||
| "Except for the dimension of the specified " | ||
| "axis along which all the inputs are concatenated, " | ||
| "dimensions of all the other axises of the input " | ||
| "LoDTensors should be the same."); | ||
| } | ||
| } | ||
| PADDLE_ENFORCE_GT(ins[0]->NumLevels(), level, | ||
| "The levels of all the input LoDTensors " | ||
| "should be greater than the specify level"); | ||
|
|
||
| out->mutable_data<T>(ctx.GetPlace()); | ||
| auto out_lod = concatLoD<LoDTensor>(ins, axis, level); | ||
| out->set_lod(out_lod); | ||
|
|
||
| auto out_lod_level = out_lod[level]; | ||
| for (size_t i = 0; i < out_lod_level.size() - 1; ++i) { | ||
| Tensor out_t = out->Slice<T>(static_cast<int>(out_lod_level[i]), | ||
| static_cast<int>(out_lod_level[i + 1])); | ||
| auto out_stride = framework::stride(out_t.dims()); | ||
| size_t offset = 0; | ||
|
|
||
| for (size_t j = 0; j < n; ++j) { | ||
| auto in_lod_level = ins[j]->lod()[level]; | ||
| auto in_stride = framework::stride(ins[j]->dims()); | ||
| Tensor in_t = ins[j]->Slice<T>(static_cast<int>(in_lod_level[i]), | ||
| static_cast<int>(in_lod_level[i + 1])); | ||
| size_t axis_dim = in_t.dims()[axis]; | ||
| StridedMemcpy<T>(ctx.device_context(), in_t.data<T>(), in_stride, | ||
| in_t.dims(), out_stride, out_t.data<T>() + offset); | ||
| offset += axis_dim * in_stride[axis]; | ||
| } | ||
| } | ||
| } | ||
| }; | ||
|
|
||
| template <typename Place, typename T> | ||
| class SequenceConcatGradOpKernel : public framework::OpKernel<T> { | ||
| public: | ||
| void Compute(const framework::ExecutionContext& ctx) const override { | ||
| auto ins = ctx.MultiInput<framework::LoDTensor>("X"); | ||
| auto* out_grad = | ||
| ctx.Input<framework::LoDTensor>(framework::GradVarName("Out")); | ||
| auto x_grads = | ||
| ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X")); | ||
| size_t axis = static_cast<size_t>(ctx.Attr<int>("axis")); | ||
| size_t level = static_cast<size_t>(ctx.Attr<int>("level")); | ||
| const size_t n = x_grads.size(); | ||
|
|
||
| // Set Grad(X) LoD as X | ||
| for (size_t i = 0; i < n; i++) { | ||
| x_grads[i]->set_lod(ins[i]->lod()); | ||
| x_grads[i]->mutable_data<T>(ctx.GetPlace()); | ||
| } | ||
|
|
||
| auto out_lod = concatLoD<LoDTensor>(ins, axis, level); | ||
| auto out_lod_level = out_lod[level]; | ||
|
|
||
| for (size_t i = 0; i < out_lod_level.size() - 1; ++i) { | ||
| Tensor out_grad_t = | ||
| out_grad->Slice<T>(static_cast<int>(out_lod_level[i]), | ||
| static_cast<int>(out_lod_level[i + 1])); | ||
| auto out_grad_stride = framework::stride(out_grad_t.dims()); | ||
| size_t offset = 0; | ||
|
|
||
| for (size_t j = 0; j < n; ++j) { | ||
| auto x_grad_lod_level = x_grads[j]->lod()[level]; | ||
| auto x_grad_stride = framework::stride(x_grads[j]->dims()); | ||
| Tensor x_grad_t = | ||
| x_grads[j]->Slice<T>(static_cast<int>(x_grad_lod_level[i]), | ||
| static_cast<int>(x_grad_lod_level[i + 1])); | ||
| size_t axis_dim = x_grad_t.dims()[axis]; | ||
| StridedMemcpy<T>(ctx.device_context(), out_grad_t.data<T>() + offset, | ||
| out_grad_stride, out_grad_t.dims(), x_grad_stride, | ||
| x_grad_t.data<T>()); | ||
| offset += axis_dim * out_grad_stride[axis]; | ||
| } | ||
| } | ||
| } | ||
| }; | ||
|
|
||
| } // namespace operators | ||
| } // namespace paddle |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,77 @@ | ||
| import unittest | ||
| import numpy as np | ||
| from op_test import OpTest | ||
|
|
||
|
|
||
| class TestConcatOp(OpTest): | ||
| def set_data(self): | ||
| # two level, batch size is 3 | ||
| x0 = np.random.random((4, 6, 3)).astype('float32') | ||
| lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]] | ||
| x1 = np.random.random((4, 8, 3)).astype('float32') | ||
| lod1 = [[0, 2, 4], [0, 1, 2, 3, 4]] | ||
| axis = 1 | ||
| level = 1 | ||
| self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]} | ||
| self.attrs = {'axis': axis, 'level': level} | ||
| outs = [] | ||
| for i in range(4): | ||
| sub_x0 = x0[lod0[level][i]:lod0[level][i + 1], :] | ||
| sub_x1 = x1[lod1[level][i]:lod1[level][i + 1], :] | ||
| outs.append(np.concatenate((sub_x0, sub_x1), axis=axis)) | ||
|
|
||
| self.outputs = {'Out': np.concatenate(outs, axis=0)} | ||
|
|
||
| def setUp(self): | ||
| self.op_type = "sequence_concat" | ||
| self.set_data() | ||
|
|
||
| def test_check_output(self): | ||
| self.check_output() | ||
|
|
||
| def test_check_grad(self): | ||
| self.check_grad(['x0'], 'Out') | ||
|
|
||
|
|
||
| class TestConcatOpDiffLod(TestConcatOp): | ||
| def set_data(self): | ||
| # two level, batch size is 3 | ||
| x0 = np.random.random((4, 6, 3)).astype('float32') | ||
| lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]] | ||
| x1 = np.random.random((5, 6, 3)).astype('float32') | ||
| lod1 = [[0, 3, 5], [0, 1, 2, 3, 5]] | ||
| axis = 0 | ||
| level = 1 | ||
| self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]} | ||
| self.attrs = {'axis': axis, 'level': level} | ||
| outs = [] | ||
| for i in range(4): | ||
| sub_x0 = x0[lod0[level][i]:lod0[level][i + 1], :] | ||
| sub_x1 = x1[lod1[level][i]:lod1[level][i + 1], :] | ||
| outs.append(np.concatenate((sub_x0, sub_x1), axis=axis)) | ||
|
|
||
| self.outputs = {'Out': np.concatenate(outs, axis=0)} | ||
|
|
||
|
|
||
| class TestConcatOpLevelZero(TestConcatOp): | ||
| def set_data(self): | ||
| # two level, batch size is 3 | ||
| x0 = np.random.random((4, 3, 4)).astype('float32') | ||
| lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]] | ||
| x1 = np.random.random((5, 3, 4)).astype('float32') | ||
| lod1 = [[0, 3, 5], [0, 1, 3, 4, 5]] | ||
| axis = 0 | ||
| level = 0 | ||
| self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]} | ||
| self.attrs = {'axis': axis, 'level': level} | ||
| outs = [] | ||
| for i in range(2): | ||
| sub_x0 = x0[lod0[level][i]:lod0[level][i + 1], :] | ||
| sub_x1 = x1[lod1[level][i]:lod1[level][i + 1], :] | ||
| outs.append(np.concatenate((sub_x0, sub_x1), axis=axis)) | ||
|
|
||
| self.outputs = {'Out': np.concatenate(outs, axis=0)} | ||
|
|
||
|
|
||
| if __name__ == '__main__': | ||
| unittest.main() |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
之前设计框架时讨论,
InferShape里是要能够推断出完成的Shape信息,所以下面LoD的check,set_lod,concatLoD实现可能需要移到这里。 @reyoungUh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
赞同在InferShape里推断出所有Shape信息,但现在的接口貌似还没有获取LoD的接口?
https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/shape_inference.h#L25