Skip to content
Merged
Show file tree
Hide file tree
Changes from 12 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion paddle/operators/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -115,7 +115,8 @@ set(DEPS_OPS
softmax_with_cross_entropy_op
sum_op
pool_op
pool_with_index_op)
pool_with_index_op
lstm_op)


op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
Expand All @@ -126,6 +127,7 @@ op_library(softmax_with_cross_entropy_op DEPS cross_entropy softmax)
op_library(sum_op DEPS net_op)
op_library(pool_op DEPS pooling)
op_library(pool_with_index_op DEPS pooling)
op_library(lstm_op DEPS sequence2batch lstm_compute math_function)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里不需要加math_function,12行已经加过依赖了。

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.


list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS})
foreach(src ${GENERAL_OPS})
Expand Down
226 changes: 226 additions & 0 deletions paddle/operators/lstm_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,226 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/lstm_op.h"

namespace paddle {
namespace operators {

class LSTMOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Input"),
"Input(Input) of LSTM should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
"Output(Hidden) of LSTM should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Cell"),
"Output(Cell) of LSTM should not be null.");

auto x_dims = ctx->GetInputDim("Input");
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

if (ctx->HasInput("H0")) {
PADDLE_ENFORCE(ctx->HasInput("C0"),
"Input(Cell) and Input(Hidden) of LSTM should not "
"be null at the same time.");
auto h_dims = ctx->GetInputDim("H0");
auto c_dims = ctx->GetInputDim("C0");
PADDLE_ENFORCE(h_dims == c_dims,
"The dimension of Input(H0) and Input(C0) "
"should be the same.");
}

int frame_size = x_dims[1] / 4;
auto w_dims = ctx->GetInputDim("Weight");
PADDLE_ENFORCE_EQ(w_dims.size(), 2,
"The rank of Input(Weight) should be 2.");
PADDLE_ENFORCE_EQ(w_dims[0], frame_size,
"The first dimension of Input(Weight) "
"should be %d.",
frame_size);
PADDLE_ENFORCE_EQ(w_dims[1], 4 * frame_size,
"The second dimension of Input(Weight) "
"should be 4 * %d.",
frame_size);
auto b_dims = ctx->GetInputDim("Bias");
PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
PADDLE_ENFORCE_EQ(b_dims[0], 1,
"The first dimension of Input(Bias) should be 1.");
if (ctx->Attrs().Get<bool>("usePeepholes")) {
PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size,
"The second dimension of Input(Bias) should be "
"7 * %d if enable peepholes connection",
frame_size);
} else {
PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
"The second dimension of Input(Bias) should be "
"4 * %d if diable peepholes connection",
frame_size);
}
ctx->SetOutputDim("Hidden", {x_dims[0], frame_size});
ctx->SetOutputDim("Cell", {x_dims[0], frame_size});
ctx->SetOutputDim("BatchGate", x_dims);
ctx->ShareLoD("Input", "Hidden");
ctx->ShareLoD("Input", "Cell");
}
};

class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
public:
LSTMOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Input",
"(LoDTensor) the first input is a LodTensor, which support "
"variable-time length input sequence. The underlying tensor in "
"this LoDTenosr is a matrix with shape (T X 4D), where, T is the "
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

where后面不需要逗号

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.

"total time steps in this mini-batch, D is the hidden size.");
AddInput("H0",
"(Tensor, optional) the initial hidden state is an optional "
"input. This is a tensor with shape (N x D), where N is the "
"batch size, D is the hidden size.");
AddInput("C0",
"(Tensor, optional) the initial cell state is an optional "
"input. This is a tensor with shape (N x D), where N is the "
"batch size. `H0` and `C0` can be NULL but only at the same time");
AddInput("Weight",
"(Tensor) the learnable hidden-hidden weights."
" - The shape is (D x 4*D), where D is the hidden size. "
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

4*D-》4D,看89行是用4D,下同。或者都用4*D的格式。

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.

" - Weight = {W_ih, W_fh, W_ch, W_oh}");
AddInput("Bias",
"(Tensor) the learnable weights, which contains two parts: "
"input-hidden bias weight and peephole connections weight if "
"seting `usePeepholes` True. "
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

seting-》setting

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.

"1. `usePeepholes = False` "
" - The shape is (1 x 4*D). "
" - Bias = {b_i, b_f, b_c, b_o}."
"2. `usePeepholes = True` "
" - The shape is (1 x 7*D). "
" - Bias = {b_i, b_f, b_c, b_o, W_ic, W_fc, W_oc}.");
AddOutput("BatchGate",
"(LoDTensor) This LoDTensor contains input gate, forget gate "
"and output gate aftern the nonlinear computation. This "
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

aftern-》after,笔误

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.

"LoDTensor has the same shape with the reorganized input, which "
"was also be called batch input. The LoD size is 2. The first "
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

was-》is?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.

"LoD is the batch offsets and the second LoD contains the "
"indexes, which denote the position of reorganized sequence "
"in the raw input.")
.AsIntermediate();
AddOutput("Hidden",
"(LoDTensor) the hidden state lod tensor of LSTM operator. "
"The shape and lod is the same with the `Input`.");
AddOutput("Cell",
"(LoDTensor) the cell state lod tensor of LSTM operator. "
"The shape and lod is the same with the `Input`.");
AddAttr<bool>("usePeepholes",
"(bool, defalut: True) "
"whether to enable diagonal/peephole connections.")
.SetDefault(true);
AddAttr<bool>("isReverse",
"(bool, defalut: False) "
"whether to compute reversed LSTM.")
.SetDefault(false);
AddAttr<std::string>(
"gateActivation",
"(string, defalut: sigmoid)"
"The activation for input gate, forget gate and output "
"gate, `sigmoid` by defalut.")
.SetDefault("sigmoid");
AddAttr<std::string>("cellActivation",
"(string, defalut: tanh)"
"The activation for cell output, `tanh` by defalut.")
.SetDefault("tanh");
AddAttr<std::string>("candidateActivation",
"(string, defalut: tanh)"
"The activation for candidate hidden state, "
"`tanh` by defalut.")
.SetDefault("tanh");
AddComment(R"DOC(Long-Short Term Memory (LSTM) Operator
The defalut implementation is diagonal/peephole connection [1], the formula is
as follows
i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)
f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)
\tilde{c_t} = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)
o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)
c_t = f_t ⊙ c_{t-1} + i_t ⊙ \tilde{c_t}
h_t = o_t ⊙ act_h(c_t)
where the W terms denote weight matrices (e.g. \f$W_{xi}\f$ is the matrix
of weights from the input gate to the input), \f$W_{ic}, W_{fc}, W_{oc}\f$
are diagonal weight matrices for peephole connections. In our implenmention,
We use vectors to reprenset these diagonal weight matrices. The b terms
denote bias vectors (\f$b_i\f$ is the input gate bias vector), \f$\sigma\f$
is the non-line actications, such as logistic sigmoid function, and
\f$i, f, o\f$ and \f$c\f$ are respectively the input gate, forget gate,
output gate and cell activation vectors, all of which are the same size as
the cell output activation vector \f$h\f$.
The ⊙ is the element-wise product of the vectors, \f$act_g\f$ and \f$act_h\f$
are the cell input and cell output activation functions, `tanh` is usually
used for them. \f$\tilde{c_t}\f$ is also called candidate hidden state,
which is computed based on the current input and the previous hidden state.
Set `usePeepholes` False to disable peephole connection [2]. The formula
is omitted here.
@note These \f$W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\f$
operations on the input x_{t} were NOT included in this operator. The
users can choose to use fully-connect operator before LSTM operator.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Users,前面不需要the

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.

[1] Hasim Sak, Andrew Senior, and Francoise Beaufays. Long short-term memory
recurrent neural network architectures for large scale acoustic modeling.
INTERSPEECH, 2014.
[2] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8):1735-1780, 1997.
)DOC");
}
};

class LSTMGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Hidden")),
"Input(Hidden@GRAD) should not be null");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Cell")),
"Input(Cell@GRAD) should not be null");
ctx->SetOutputDim(framework::GradVarName("Weight"),
ctx->GetInputDim("Weight"));
ctx->SetOutputDim(framework::GradVarName("Bias"), ctx->GetInputDim("Bias"));
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(lstm, ops::LSTMOp, ops::LSTMOpMaker, lstm_grad, ops::LSTMGradOp);
REGISTER_OP_CPU_KERNEL(lstm, ops::LSTMKernel<paddle::platform::CPUPlace, float>,
ops::LSTMKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL(lstm_grad,
ops::LSTMGradKernel<paddle::platform::CPUPlace, float>,
ops::LSTMGradKernel<paddle::platform::CPUPlace, double>);
23 changes: 23 additions & 0 deletions paddle/operators/lstm_op.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#define EIGEN_USE_GPU
#include "paddle/operators/lstm_op.h"

namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(lstm, ops::LSTMKernel<paddle::platform::GPUPlace, float>,
ops::LSTMKernel<paddle::platform::GPUPlace, double>);
REGISTER_OP_GPU_KERNEL(lstm_grad,
ops::LSTMGradKernel<paddle::platform::GPUPlace, float>,
ops::LSTMGradKernel<paddle::platform::GPUPlace, double>);
Loading