-
Notifications
You must be signed in to change notification settings - Fork 5.9k
Adding the FTRL optimizer. #5785
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,139 @@ | ||
| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
|
||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||
| you may not use this file except in compliance with the License. | ||
| You may obtain a copy of the License at | ||
|
|
||
| http://www.apache.org/licenses/LICENSE-2.0 | ||
|
|
||
| Unless required by applicable law or agreed to in writing, software | ||
| distributed under the License is distributed on an "AS IS" BASIS, | ||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| See the License for the specific language governing permissions and | ||
| limitations under the License. */ | ||
|
|
||
| #include "paddle/operators/ftrl_op.h" | ||
|
|
||
| namespace paddle { | ||
| namespace operators { | ||
|
|
||
| class FTRLOp : public framework::OperatorWithKernel { | ||
| public: | ||
| using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
|
||
| protected: | ||
| void InferShape(framework::InferShapeContext *ctx) const override { | ||
| PADDLE_ENFORCE(ctx->HasInput("Param"), | ||
| "Input(Param) of FTRL should not be null."); | ||
| PADDLE_ENFORCE(ctx->HasInput("SquaredAccumulator"), | ||
| "Input(SquaredAccumulator) of FTRL should not be null."); | ||
| PADDLE_ENFORCE(ctx->HasInput("LinearAccumulator"), | ||
| "Input(LinearAccumulator) of FTRL should not be null."); | ||
| PADDLE_ENFORCE(ctx->HasInput("Grad"), | ||
| "Input(Grad) of FTRL should not be null."); | ||
| PADDLE_ENFORCE(ctx->HasInput("LearningRate"), | ||
| "Input(LearningRate) of FTRL should not be null."); | ||
|
|
||
| PADDLE_ENFORCE(ctx->HasOutput("ParamOut"), | ||
| "Output(ParamOut) of FTRL should not be null."); | ||
| PADDLE_ENFORCE(ctx->HasOutput("SquaredAccumOut"), | ||
| "Output(SquaredAccumOut) of FTRL should not be null."); | ||
| PADDLE_ENFORCE(ctx->HasOutput("LinearAccumOut"), | ||
| "Output(LinearAccumOut) of FTRL should not be null."); | ||
|
|
||
| auto param_dim = ctx->GetInputDim("Param"); | ||
| PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("Grad"), | ||
| "Two input of FTRL Op's dimension must be same."); | ||
|
|
||
| auto lr_dim = ctx->GetInputDim("LearningRate"); | ||
| PADDLE_ENFORCE_EQ(framework::product(lr_dim), 1, | ||
| "Learning Rate should be a scalar."); | ||
|
|
||
| ctx->SetOutputDim("ParamOut", param_dim); | ||
| ctx->SetOutputDim("SquaredAccumOut", param_dim); | ||
| ctx->SetOutputDim("LinearAccumOut", param_dim); | ||
| } | ||
| }; | ||
|
|
||
| class FTRLOpMaker : public framework::OpProtoAndCheckerMaker { | ||
| public: | ||
| FTRLOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) | ||
| : OpProtoAndCheckerMaker(proto, op_checker) { | ||
| AddInput("Param", | ||
| "(Tensor, default Tensor<float>) " | ||
| "Input parameter value that has to be updated."); | ||
| AddInput("SquaredAccumulator", | ||
| "(Tensor, default Tensor<float>) " | ||
| "Accumulator that accumulates squared gradients."); | ||
| AddInput("LinearAccumulator", | ||
| "(Tensor, default Tensor<float>) " | ||
| "Accumulator that accumulates linear gradients."); | ||
| AddInput("Grad", | ||
| "(Tensor, default Tensor<float>) " | ||
| "Input gradient of the parameter."); | ||
| AddInput("LearningRate", | ||
| "(Tensor, default Tensor<float>) " | ||
| "The learning rate should be a tensor of size 1."); | ||
|
|
||
| AddOutput("ParamOut", "(Tensor) Output updated parameter value."); | ||
| AddOutput("SquaredAccumOut", | ||
| "(Tensor) Output accumulated squared" | ||
| " gradients."); | ||
| AddOutput("LinearAccumOut", | ||
| "(Tensor) Output accumulated linear" | ||
| " gradients."); | ||
|
|
||
| AddAttr<float>("l1", | ||
| "(float, default 0.0) " | ||
| "L1 regularization strength.") | ||
| .SetDefault(0.0f); | ||
| AddAttr<float>("l2", | ||
| "(float, default 0.0) " | ||
| "L2 regularization strength.") | ||
| .SetDefault(0.0f); | ||
| AddAttr<float>("lr_power", | ||
| "(float, default -0.5f) " | ||
| "Learning Rate Power.") | ||
| .SetDefault(-0.5f); | ||
| AddComment(R"DOC( | ||
| FTRL (Follow The Regularized Leader) Operator. | ||
|
|
||
| Optimizer that implements the FTRL algorithm: | ||
|
|
||
| $$ | ||
| new\_accum = squared\_accum + grad^2 \\ | ||
| if (lr\_power == -0.5) { | ||
| linear\_accum += grad - (\surd(new\_accum) - \surd(squared\_accum)) / | ||
| (learning\_rate * param) \\ | ||
| } else { | ||
| linear\_accum += grad - | ||
| (new\_accum^{-lr\_power} - accum^{-lr\_power}) / | ||
| (learning\_rate * param) \\ | ||
| } | ||
|
|
||
| x = (l1 * sign(linear\_accum) - linear\_accum) | ||
| if (lr\_power == -0.5) { | ||
| y = \frac{\surd(new\_accum)}{learning\_rate} + (2 * l2) \\ | ||
| pre\_shrink = \frac{x}{y} \\ | ||
| param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0) \\ | ||
| } else { | ||
| y = \frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2) \\ | ||
| pre\_shrink = \frac{x}{y} \\ | ||
| param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0) \\ | ||
| } | ||
| squared\_accum += grad^2; | ||
| $$ | ||
|
|
||
| The paper that proposed Follow The Regularized Leader (FTRL): | ||
| (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf) | ||
|
|
||
| )DOC"); | ||
| } | ||
| }; | ||
| } // namespace operators | ||
| } // namespace paddle | ||
|
|
||
| namespace ops = paddle::operators; | ||
| REGISTER_OP_WITHOUT_GRADIENT(ftrl, ops::FTRLOp, ops::FTRLOpMaker); | ||
| REGISTER_OP_CPU_KERNEL(ftrl, | ||
| ops::FTRLOpKernel<paddle::platform::CPUPlace, float>); |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,19 @@ | ||
| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
|
||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||
| You may not use this file except in compliance with the License. | ||
| You may obtain a copy of the License at | ||
|
|
||
| http://www.apache.org/licenses/LICENSE-2.0 | ||
|
|
||
| Unless required by applicable law or agreed to in writing, software distributed | ||
| under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | ||
| CONDITIONS OF ANY KIND, either express or implied. See the License for the | ||
| specific language governing permissions and limitations under the License. */ | ||
|
|
||
| #define EIGEN_USE_GPU | ||
| #include "paddle/operators/ftrl_op.h" | ||
|
|
||
| namespace ops = paddle::operators; | ||
| REGISTER_OP_GPU_KERNEL(ftrl, | ||
| ops::FTRLOpKernel<paddle::platform::GPUPlace, float>); | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,96 @@ | ||
| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
|
||
| Licensed under the Apache License, Version 2.0 (the "License"); | ||
| you may not use this file except in compliance with the License. | ||
| You may obtain a copy of the License at | ||
|
|
||
| http://www.apache.org/licenses/LICENSE-2.0 | ||
|
|
||
| Unless required by applicable law or agreed to in writing, software | ||
| distributed under the License is distributed on an "AS IS" BASIS, | ||
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| See the License for the specific language governing permissions and | ||
| limitations under the License. */ | ||
|
|
||
| #pragma once | ||
| #include "paddle/framework/eigen.h" | ||
| #include "paddle/framework/op_registry.h" | ||
|
|
||
| namespace paddle { | ||
| namespace operators { | ||
|
|
||
| using Tensor = framework::Tensor; | ||
| template <typename T, int MajorType = Eigen::RowMajor, | ||
| typename IndexType = Eigen::DenseIndex> | ||
| using EigenVector = framework::EigenVector<T, MajorType, IndexType>; | ||
|
|
||
| template <typename Place, typename T> | ||
| class FTRLOpKernel : public framework::OpKernel<T> { | ||
| public: | ||
| void Compute(const framework::ExecutionContext& ctx) const override { | ||
| auto* param_out = ctx.Output<Tensor>("ParamOut"); | ||
| auto* sq_accum_out = ctx.Output<Tensor>("SquaredAccumOut"); | ||
| auto* lin_accum_out = ctx.Output<Tensor>("LinearAccumOut"); | ||
|
|
||
| param_out->mutable_data<T>(ctx.GetPlace()); | ||
| sq_accum_out->mutable_data<T>(ctx.GetPlace()); | ||
| lin_accum_out->mutable_data<T>(ctx.GetPlace()); | ||
|
|
||
| auto grad = ctx.Input<Tensor>("Grad"); | ||
|
|
||
| auto l1 = static_cast<T>(ctx.Attr<float>("l1")); | ||
| auto l2 = static_cast<T>(ctx.Attr<float>("l2")); | ||
| auto lr_power = static_cast<T>(ctx.Attr<float>("lr_power")); | ||
|
|
||
| auto p = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Param")); | ||
| auto sq_accum = | ||
| EigenVector<T>::Flatten(*ctx.Input<Tensor>("SquaredAccumulator")); | ||
| auto lin_accum = | ||
| EigenVector<T>::Flatten(*ctx.Input<Tensor>("LinearAccumulator")); | ||
| auto g = EigenVector<T>::Flatten(*grad); | ||
| auto lr = EigenVector<T>::Flatten(*ctx.Input<Tensor>("LearningRate")); | ||
|
|
||
| auto p_out = EigenVector<T>::Flatten(*param_out); | ||
| auto s_acc_out = EigenVector<T>::Flatten(*sq_accum_out); | ||
| auto l_acc_out = EigenVector<T>::Flatten(*lin_accum_out); | ||
| auto place = ctx.GetEigenDevice<Place>(); | ||
|
|
||
| Eigen::DSizes<int, 1> grad_dsize(grad->numel()); | ||
|
|
||
| auto new_accum = sq_accum + g * g; | ||
| // Special case for lr_power = -0.5 | ||
| if (lr_power == static_cast<T>(-0.5)) { | ||
| l_acc_out.device(place) = | ||
| lin_accum + g - | ||
| ((new_accum.sqrt() - sq_accum.sqrt()) / lr.broadcast(grad_dsize)) * p; | ||
| } else { | ||
| l_acc_out.device(place) = | ||
| lin_accum + g - | ||
| ((new_accum.pow(-lr_power) - sq_accum.pow(-lr_power)) / | ||
| lr.broadcast(grad_dsize)) * | ||
| p; | ||
| } | ||
|
|
||
| auto x = (l_acc_out.constant(l1) * l_acc_out.sign() - l_acc_out); | ||
| if (lr_power == static_cast<T>(-0.5)) { | ||
| auto y = (new_accum.sqrt() / lr.broadcast(grad_dsize)) + | ||
| l_acc_out.constant(static_cast<T>(2) * l2); | ||
| auto pre_shrink = x / y; | ||
| p_out.device(place) = | ||
| (l_acc_out.abs() > l_acc_out.constant(l1)) | ||
| .select(pre_shrink, p.constant(static_cast<T>(0))); | ||
| } else { | ||
| auto y = (new_accum.pow(-lr_power) / lr.broadcast(grad_dsize)) + | ||
| l_acc_out.constant(static_cast<T>(2) * l2); | ||
| auto pre_shrink = x / y; | ||
| p_out.device(place) = | ||
| (l_acc_out.abs() > l_acc_out.constant(l1)) | ||
| .select(pre_shrink, p.constant(static_cast<T>(0))); | ||
| } | ||
|
|
||
| s_acc_out.device(place) = sq_accum + g * g; | ||
| } | ||
| }; | ||
|
|
||
| } // namespace operators | ||
| } // namespace paddle |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,62 @@ | ||
| import unittest | ||
| import numpy as np | ||
| from op_test import OpTest | ||
|
|
||
|
|
||
| class TestFTRLOp(OpTest): | ||
| def setUp(self): | ||
| self.op_type = "ftrl" | ||
| w = np.random.random((102, 105)).astype("float32") | ||
| g = np.random.random((102, 105)).astype("float32") | ||
| sq_accum = np.full((102, 105), 0.1).astype("float32") | ||
| linear_accum = np.full((102, 105), 0.1).astype("float32") | ||
| lr = np.array([0.01]).astype("float32") | ||
| l1 = 0.1 | ||
| l2 = 0.2 | ||
| lr_power = -0.5 | ||
|
|
||
| self.inputs = { | ||
| 'Param': w, | ||
| 'SquaredAccumulator': sq_accum, | ||
| 'LinearAccumulator': linear_accum, | ||
| 'Grad': g, | ||
| 'LearningRate': lr | ||
| } | ||
| self.attrs = { | ||
| 'l1': l1, | ||
| 'l2': l2, | ||
| 'lr_power': lr_power, | ||
| 'learning_rate': lr | ||
| } | ||
| new_accum = sq_accum + g * g | ||
| if lr_power == -0.5: | ||
| linear_out = linear_accum + g - ( | ||
| (np.sqrt(new_accum) - np.sqrt(sq_accum)) / lr) * w | ||
| else: | ||
| linear_out = linear_accum + g - ((np.power( | ||
| new_accum, -lr_power) - np.power(sq_accum, -lr_power)) / lr) * w | ||
|
|
||
| x = (l1 * np.sign(linear_out) - linear_out) | ||
| if lr_power == -0.5: | ||
| y = (np.sqrt(new_accum) / lr) + (2 * l2) | ||
| pre_shrink = x / y | ||
| param_out = np.where(np.abs(linear_out) > l1, pre_shrink, 0.0) | ||
| else: | ||
| y = (np.power(new_accum, -lr_power) / lr) + (2 * l2) | ||
| pre_shrink = x / y | ||
| param_out = np.where(np.abs(linear_out) > l1, pre_shrink, 0.0) | ||
|
|
||
| sq_accum_out = sq_accum + g * g | ||
|
|
||
| self.outputs = { | ||
| 'ParamOut': param_out, | ||
| 'SquaredAccumOut': sq_accum_out, | ||
| 'LinearAccumOut': linear_out | ||
| } | ||
|
|
||
| def test_check_output(self): | ||
| self.check_output() | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| unittest.main() |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The calculations here not sufficiently precise in float32. This is not a bug, but we need to consider support double, fp16.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
And the same with attribute types.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yeah that's a good point.