Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
115 changes: 115 additions & 0 deletions paddle/operators/log_loss_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/log_loss_op.h"

namespace paddle {
namespace operators {

class LogLossOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Predicted"),
"Input(Predicted) must be initialized.");
PADDLE_ENFORCE(ctx->HasInput("Labels"),
"Input(Labels) must be initialized.");

auto pred_dims = ctx->GetInputDim("Predicted");
auto label_dims = ctx->GetInputDim("Labels");

PADDLE_ENFORCE_EQ(pred_dims, label_dims);
PADDLE_ENFORCE_EQ(pred_dims.size(), 2,
"The rank of Input(Predicted) must be 2 and the shape is "
"[batch_size, 1].");
PADDLE_ENFORCE_EQ(pred_dims[1], 1,
"Each row of Input(Predicted) contains a real value, "
"so the 2nd dimension of Input(X) must be 1.");

ctx->SetOutputDim("Loss", {pred_dims[0], 1});
ctx->ShareLoD("Predicted", "Loss");
}
};

template <typename AttrType>
class LogLossOpMaker : public framework::OpProtoAndCheckerMaker {
public:
LogLossOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Predicted",
"The input value (Predicted) of Log loss op."
"Predicted is a 2-D tensor with shape [batch_size, 1].");
AddInput("Labels",
"The target value (Labels) of Log loss op."
"Labels is a 2-D tensor with shape [batch_size, 1].");
AddOutput("Loss",
"The output tensor with shape [batch_size, 1] "
"which represents the log loss.");
AddAttr<AttrType>("epsilon", "Epsilon in log loss.");
AddComment(R"DOC(
LogLoss Operator.

Log loss is a loss function used for binary classification. Log Loss quantifies
the accuracy of a classifier by penalising false classifications. Minimising the
Log Loss is equivalent to maximising the accuracy of the classifier. We define
Predicted as the values predicted by our model and Labels as the target ground
truth value. Log loss can evaluate how close the predicted values are to the
target. The shapes of Predicted and Labels are both [batch_size, 1].
The equation is:

$$
Loss = - Labels * log(Predicted + \epsilon) -
(1 - Labels) * log(1 - Predicted + \epsilon)
$$

)DOC");
}
};

class LogLossGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Predicted"),
"Input(Predicted) should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Labels"),
"Input(Labels) should not be null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
"Input(Loss@GRAD) should not be null.");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Predicted")),
"Output(Predicted@GRAD) should not be null.");

auto pred_dims = ctx->GetInputDim("Predicted");
auto label_dims = ctx->GetInputDim("Labels");
auto loss_grad_dims = ctx->GetInputDim(framework::GradVarName("Loss"));
PADDLE_ENFORCE_EQ(loss_grad_dims, pred_dims);

auto pred_grad_name = framework::GradVarName("Predicted");
ctx->SetOutputDim(pred_grad_name, pred_dims);
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(log_loss, ops::LogLossOp, ops::LogLossOpMaker<float>, log_loss_grad,
ops::LogLossGradOp);
REGISTER_OP_CPU_KERNEL(log_loss,
ops::LogLossKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
log_loss_grad, ops::LogLossGradKernel<paddle::platform::CPUPlace, float>);
22 changes: 22 additions & 0 deletions paddle/operators/log_loss_op.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#define EIGEN_USE_GPU
#include "paddle/operators/log_loss_op.h"

namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(log_loss,
ops::LogLossKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
log_loss_grad, ops::LogLossGradKernel<paddle::platform::GPUPlace, float>);
75 changes: 75 additions & 0 deletions paddle/operators/log_loss_op.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

template <typename Place, typename T, typename AttrType = T>
class LogLossKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* loss_out = ctx.Output<Tensor>("Loss");

loss_out->mutable_data<T>(ctx.GetPlace());

auto epsilon = static_cast<T>(ctx.Attr<AttrType>("epsilon"));

auto prediction = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Predicted"));
auto label = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Labels"));

auto loss = EigenVector<T>::Flatten(*loss_out);
auto place = ctx.GetEigenDevice<Place>();

loss.device(place) = (-(label * (prediction + epsilon).log()) -
((static_cast<T>(1) - label) *
(static_cast<T>(1) - prediction + epsilon).log()));
}
};

template <typename Place, typename T, typename AttrType = T>
class LogLossGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto epsilon = static_cast<T>(ctx.Attr<AttrType>("epsilon"));

auto prediction = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Predicted"));
auto label = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Labels"));

auto* dloss = ctx.Input<Tensor>(framework::GradVarName("Loss"));
auto* dpred = ctx.Output<Tensor>(framework::GradVarName("Predicted"));

auto dl = EigenVector<T>::Flatten(*dloss);
auto place = ctx.GetEigenDevice<Place>();

if (dpred) {
dpred->mutable_data<T>(ctx.GetPlace());
auto dx = framework::EigenVector<T>::Flatten(*dpred);
dx.device(place) = dl * (-(label / (prediction + epsilon)) +
((static_cast<T>(1) - label) /
(static_cast<T>(1) - prediction + epsilon)));
}
}
};

} // namespace operators
} // namespace paddle
33 changes: 33 additions & 0 deletions python/paddle/v2/fluid/tests/test_log_loss_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
import unittest
import numpy as np
from op_test import OpTest


class TestLogLossOp(OpTest):
def setUp(self):
self.op_type = 'log_loss'
samples_num = 32

predicted = np.random.uniform(0.1, 1.0,
(samples_num, 1)).astype("float32")
labels = np.random.randint(0, 2, (samples_num, 1)).astype("float32")
epsilon = 1e-4
self.inputs = {
'Predicted': predicted,
'Labels': labels,
}

self.attrs = {'epsilon': epsilon}
loss = -labels * np.log(predicted + epsilon) - (
1 - labels) * np.log(1 - predicted + epsilon)
self.outputs = {'Loss': loss}

def test_check_output(self):
self.check_output()

def test_check_grad(self):
self.check_grad(['Predicted'], 'Loss', max_relative_error=0.03)


if __name__ == '__main__':
unittest.main()