-
Notifications
You must be signed in to change notification settings - Fork 1.9k
Open
Description
Hi.
When running tutorial_transformer.ipynb notebook on the line model = U2Model.from_config(model_conf)
the TypeError: Conv2D.__init__() takes from 4 to 8 positional arguments but 12 were given
raised:
model_conf cmvn_file: None
cmvn_file_type: json
decoder: transformer
decoder_conf:
attention_heads: 4
dropout_rate: 0.1
linear_units: 2048
num_blocks: 6
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
encoder: transformer
encoder_conf:
attention_dropout_rate: 0.0
attention_heads: 4
dropout_rate: 0.1
input_layer: conv2d
linear_units: 2048
normalize_before: True
num_blocks: 12
output_size: 256
positional_dropout_rate: 0.1
input_dim: 80
model_conf:
ctc_weight: 0.3
length_normalized_loss: False
lsm_weight: 0.1
output_dim: 4233
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
[/tmp/ipython-input-1986631129.py](https://localhost:8080/#) in <cell line: 0>()
5 model_conf.output_dim = 4233
6 print ("model_conf", model_conf)
----> 7 model = U2Model.from_config(model_conf)
6 frames
[/usr/local/lib/python3.12/dist-packages/paddlespeech/s2t/models/u2/u2.py](https://localhost:8080/#) in from_config(cls, configs)
960 nn.Layer: U2Model
961 """
--> 962 model = cls(configs)
963 return model
964
[/usr/local/lib/python3.12/dist-packages/paddlespeech/s2t/models/u2/u2.py](https://localhost:8080/#) in __init__(self, configs)
862 init_type = model_conf.get("init_type", None)
863 with DefaultInitializerContext(init_type):
--> 864 vocab_size, encoder, decoder, ctc = U2Model._init_from_config(
865 configs)
866 super().__init__(
[/usr/local/lib/python3.12/dist-packages/paddlespeech/s2t/models/u2/u2.py](https://localhost:8080/#) in _init_from_config(cls, configs)
904 logger.debug(f"U2 Encoder type: {encoder_type}")
905 if encoder_type == 'transformer':
--> 906 encoder = TransformerEncoder(
907 input_dim, global_cmvn=global_cmvn, **configs['encoder_conf'])
908 elif encoder_type == 'conformer':
[/usr/local/lib/python3.12/dist-packages/paddlespeech/s2t/modules/encoder.py](https://localhost:8080/#) in __init__(self, input_size, output_size, attention_heads, linear_units, num_blocks, dropout_rate, positional_dropout_rate, attention_dropout_rate, input_layer, pos_enc_layer_type, normalize_before, concat_after, static_chunk_size, use_dynamic_chunk, global_cmvn, use_dynamic_left_chunk)
372 See Encoder for the meaning of each parameter.
373 """
--> 374 super().__init__(input_size, output_size, attention_heads, linear_units,
375 num_blocks, dropout_rate, positional_dropout_rate,
376 attention_dropout_rate, input_layer,
[/usr/local/lib/python3.12/dist-packages/paddlespeech/s2t/modules/encoder.py](https://localhost:8080/#) in __init__(self, input_size, output_size, attention_heads, linear_units, num_blocks, dropout_rate, positional_dropout_rate, attention_dropout_rate, input_layer, pos_enc_layer_type, normalize_before, concat_after, static_chunk_size, use_dynamic_chunk, global_cmvn, use_dynamic_left_chunk, max_len)
136
137 self.global_cmvn = global_cmvn
--> 138 self.embed = subsampling_class(
139 idim=input_size,
140 odim=output_size,
[/usr/local/lib/python3.12/dist-packages/paddlespeech/s2t/modules/subsampling.py](https://localhost:8080/#) in __init__(self, idim, odim, dropout_rate, pos_enc_class)
112 super().__init__(pos_enc_class)
113 self.conv = nn.Sequential(
--> 114 Conv2D(1, odim, 3, 2),
115 nn.ReLU(),
116 Conv2D(odim, odim, 3, 2),
[/usr/local/lib/python3.12/dist-packages/paddlespeech/s2t/modules/align.py](https://localhost:8080/#) in __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, groups, padding_mode, weight_attr, bias_attr, data_format)
163 negative_slope=math.sqrt(5),
164 nonlinearity='leaky_relu'))
--> 165 super(Conv2D, self).__init__(
166 in_channels, out_channels, kernel_size, stride, padding, dilation,
167 groups, padding_mode, weight_attr, bias_attr, data_format)
TypeError: Conv2D.__init__() takes from 4 to 8 positional arguments but 12 were given

Metadata
Metadata
Assignees
Labels
No labels