-
Notifications
You must be signed in to change notification settings - Fork 2.9k
Add an example of NER task in fluid style. For issue #644 #689
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 17 commits
3b77123
6353576
88910ad
dd0fe96
f522a32
95c030a
315bb04
f35cef0
9e544d4
338ce12
bb30556
89bc536
ef70b62
1875ab1
a67b25e
c6aca9a
0a8f16a
f88033e
f3d8ff1
e29cb7b
1e47e04
e46259b
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,188 @@ | ||
| # 命名实体识别 | ||
|
|
||
| 以下是本例的简要目录结构及说明: | ||
|
|
||
| ```text | ||
| . | ||
| ├── data # 存储运行本例所依赖的数据 | ||
| │ ├── download.sh | ||
| ├── network_conf.py # 模型定义 | ||
| ├── reader.py # 数据读取接口 | ||
| ├── README.md # 文档 | ||
| ├── train.py # 训练脚本 | ||
| ├── infer.py # 预测脚本 | ||
| └── utils.py # 定义同样的函数 | ||
| ``` | ||
|
|
||
|
|
||
| ## 简介 | ||
|
|
||
| 命名实体识别(Named Entity Recognition,NER)又称作“专名识别”,是指识别文本中具有特定意义的实体,主要包括人名、地名、机构名、专有名词等,是自然语言处理研究的一个基础问题。NER任务通常包括实体边界识别、确定实体类别两部分,可以将其作为序列标注问题解决。 | ||
|
|
||
| 序列标注可以分为Sequence Classification、Segment Classification和Temporal Classification三类[[1](#参考文献)],本例只考虑Segment Classification,即对输入序列中的每个元素在输出序列中给出对应的标签。对于NER任务,由于需要标识边界,一般采用[BIO标注方法](http://book.paddlepaddle.org/07.label_semantic_roles/)定义的标签集。 | ||
|
|
||
| 根据序列标注结果可以直接得到实体边界和实体类别。类似的,分词、词性标注、语块识别、[语义角色标注](http://book.paddlepaddle.org/07.label_semantic_roles/index.cn.html)等任务都可通过序列标注来解决。使用神经网络模型解决问题的思路通常是:前层网络学习输入的特征表示,网络的最后一层在特征基础上完成最终的任务;对于序列标注问题,通常:使用基于RNN的网络结构学习特征,将学习到的特征接入CRF完成序列标注。实际上是将传统CRF中的线性模型换成了非线性神经网络。沿用CRF的出发点是:CRF使用句子级别的似然概率,能够更好的解决标记偏置问题[[2](#参考文献)]。本例也将基于此思路建立模型。虽然,这里以NER任务作为示例,但所给出的模型可以应用到其他各种序列标注任务中。 | ||
|
|
||
| 由于序列标注问题的广泛性,产生了[CRF](http://book.paddlepaddle.org/07.label_semantic_roles/index.cn.html)等经典的序列模型,这些模型大多只能使用局部信息或需要人工设计特征。随着深度学习研究的发展,循环神经网络(Recurrent Neural Network,RNN等 序列模型能够处理序列元素之间前后关联问题,能够从原始输入文本中学习特征表示,而更加适合序列标注任务,更多相关知识可参考PaddleBook中[语义角色标注](https://github.com/PaddlePaddle/book/blob/develop/07.label_semantic_roles/README.cn.md)一课。 | ||
|
|
||
| ## 模型详解 | ||
|
|
||
| NER任务的输入是"一句话",目标是识别句子中的实体边界及类别,我们参照论文\[[2](#参考文献)\]仅对原始句子进行了一些简单的预处理工作:将每个词转换为小写,并将原词是否大写另作为一个特征,共同作为模型的输入。工作流程如下: | ||
|
|
||
| 1. 构造输入 | ||
| - 输入1是句子序列,采用one-hot方式表示 | ||
| - 输入2是大写标记序列,标记了句子中每一个词是否是大写,采用one-hot方式表示; | ||
| 2. one-hot方式的句子序列和大写标记序列通过词表,转换为实向量表示的词向量序列; | ||
| 3. 将步骤2中的2个词向量序列作为双向LSTM的输入,学习输入序列的特征表示,得到新的特性表示序列; | ||
| 4. CRF以步骤3中模型学习到的特征为输入,以标记序列为监督信号,实现序列标注。 | ||
|
|
||
|
|
||
| ## 数据说明 | ||
|
|
||
| 在本例中,我们以 [CoNLL 2003 NER任务](http://www.clips.uantwerpen.be/conll2003/ner/)为例,原始Reuters数据由于版权原因需另外申请免费下载,请大家按照原网站说明获取。 | ||
|
|
||
| + 我们仅在`data`目录下的`train`和`test`文件中放置少数样本用以示例输入数据格式。 | ||
| + 本例依赖数据还包括 | ||
| 1. 输入文本的词典 | ||
| 2. 为词典中的词语提供预训练好的词向量 | ||
| 2. 标记标签的词典 | ||
| 标记标签词典已附在`data`目录中,对应于`data/target.txt`文件。输入文本的词典以及词典中词语的预训练的词向量来自:[Stanford CS224d](http://cs224d.stanford.edu/)课程作业。**为运行本例,请首先在`data`目录下运行`download.sh`脚本下载输入文本的词典和预训练的词向量。** 完成后会将这两个文件一并放入`data`目录下,输入文本的词典和预训练的词向量分别对应:`data/vocab.txt`和`data/wordVectors.txt`这两个文件。 | ||
|
||
|
|
||
| CoNLL 2003原始数据格式如下: | ||
|
|
||
| ``` | ||
| U.N. NNP I-NP I-ORG | ||
| official NN I-NP O | ||
| Ekeus NNP I-NP I-PER | ||
| heads VBZ I-VP O | ||
| for IN I-PP O | ||
| Baghdad NNP I-NP I-LOC | ||
| . . O O | ||
| ``` | ||
|
|
||
| - 第一列为原始句子序列 | ||
| - 第二、三列分别为词性标签和句法分析中的语块标签,本例不使用 | ||
| - 第四列为采用了 I-TYPE 方式表示的NER标签 | ||
| - I-TYPE 和 BIO 方式的主要区别在于语块开始标记的使用上,I-TYPE只有在出现相邻的同类别实体时对后者使用B标记,其他均使用I标记),句子之间以空行分隔。 | ||
|
|
||
| 我们在`reader.py`脚本中完成对原始数据的处理以及读取,主要包括下面几个步骤: | ||
|
|
||
| 1. 从原始数据文件中抽取出句子和标签,构造句子序列和标签序列; | ||
| 2. 将 I-TYPE 表示的标签转换为 BIO 方式表示的标签; | ||
| 3. 将句子序列中的单词转换为小写,并构造大写标记序列; | ||
| 4. 依据词典获取词对应的整数索引。 | ||
|
|
||
|
|
||
| 预处理完成后,一条训练样本包含3个部分作为神经网络的输入信息用于训练:(1)句子序列;(2)首字母大写标记序列;(3)标注序列,下表是一条训练样本的示例: | ||
|
|
||
| | 句子序列 | 大写标记序列 | 标注序列 | | ||
| | -------- | ------------ | -------- | | ||
| | u.n. | 1 | B-ORG | | ||
| | official | 0 | O | | ||
| | ekeus | 1 | B-PER | | ||
| | heads | 0 | O | | ||
| | for | 0 | O | | ||
| | baghdad | 1 | B-LOC | | ||
| | . | 0 | O | | ||
|
|
||
| ## 运行 | ||
| ### 编写数据读取接口 | ||
|
|
||
| 自定义数据读取接口只需编写一个 Python 生成器实现从原始输入文本中解析一条训练样本的逻辑。[reader.py](./reader.py) 中的`data_reader`函数实现了读取原始数据返回类型为: `paddle.data_type.integer_value_sequence`的 3 个输入(分别对应:词语在字典的序号、是否为大写、标注结果在字典中的序号)给`network_conf.ner_net`中定义的 3 个 `data_layer` 的功能。 | ||
|
|
||
| ### 训练 | ||
|
|
||
| 1. 运行 `sh data/download.sh` | ||
| 2. 修改 `train.py` 的 `main` 函数,指定数据路径 | ||
|
|
||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 看到
Collaborator
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 已修改 |
||
| ```python | ||
| main( | ||
| train_data_file="data/train", | ||
| test_data_file="data/test", | ||
| vocab_file="data/vocab.txt", | ||
| target_file="data/target.txt", | ||
| emb_file="data/wordVectors.txt", | ||
| model_save_dir="models", | ||
| num_passes=1000, | ||
| use_gpu=False, | ||
| parallel=True) | ||
| ``` | ||
|
|
||
| 3. 运行命令 `python train.py` ,**需要注意:直接运行使用的是示例数据,请替换真实的标记数据。** | ||
|
|
||
| ```text | ||
| Pass 127, Batch 9525, Cost 4.0867705, Precision 0.3954984, Recall 0.37846154, F1_score0.38679245 | ||
| Pass 127, Batch 9530, Cost 3.137265, Precision 0.42971888, Recall 0.38351256, F1_score0.405303 | ||
| Pass 127, Batch 9535, Cost 3.6240938, Precision 0.4272152, Recall 0.41795665, F1_score0.4225352 | ||
| Pass 127, Batch 9540, Cost 3.5352352, Precision 0.48464164, Recall 0.4536741, F1_score0.46864685 | ||
| Pass 127, Batch 9545, Cost 4.1130385, Precision 0.40131578, Recall 0.3836478, F1_score0.39228293 | ||
| Pass 127, Batch 9550, Cost 3.6826708, Precision 0.43333334, Recall 0.43730888, F1_score0.43531203 | ||
| Pass 127, Batch 9555, Cost 3.6363933, Precision 0.42424244, Recall 0.3962264, F1_score0.4097561 | ||
| Pass 127, Batch 9560, Cost 3.6101768, Precision 0.51363635, Recall 0.353125, F1_score0.41851854 | ||
| Pass 127, Batch 9565, Cost 3.5935276, Precision 0.5152439, Recall 0.5, F1_score0.5075075 | ||
| Pass 127, Batch 9570, Cost 3.4987144, Precision 0.5, Recall 0.4330218, F1_score0.46410686 | ||
| Pass 127, Batch 9575, Cost 3.4659843, Precision 0.39864865, Recall 0.38064516, F1_score0.38943896 | ||
| Pass 127, Batch 9580, Cost 3.1702557, Precision 0.5, Recall 0.4490446, F1_score0.47315437 | ||
| Pass 127, Batch 9585, Cost 3.1587276, Precision 0.49377593, Recall 0.4089347, F1_score0.4473684 | ||
| Pass 127, Batch 9590, Cost 3.5043538, Precision 0.4556962, Recall 0.4600639, F1_score0.45786962 | ||
| Pass 127, Batch 9595, Cost 2.981989, Precision 0.44981414, Recall 0.45149255, F1_score0.4506518 | ||
| [TrainSet] pass_id:127 pass_precision:[0.46023396] pass_recall:[0.43197003] pass_f1_score:[0.44565433] | ||
| [TestSet] pass_id:127 pass_precision:[0.4708409] pass_recall:[0.47971722] pass_f1_score:[0.4752376] | ||
| ``` | ||
| ### 预测 | ||
| 1. 修改 [infer.py](./infer.py) 的 `infer` 函数,指定:需要测试的模型的路径、测试数据、字典文件,预测标记文件的路径,默认参数如下: | ||
|
|
||
| ```python | ||
| infer( | ||
| model_path="models/params_pass_0", | ||
| batch_size=6, | ||
| test_data_file="data/test", | ||
| vocab_file="data/vocab.txt", | ||
| target_file="data/target.txt", | ||
| use_gpu=False | ||
| ) | ||
| ``` | ||
|
|
||
| 2. 在终端运行 `python infer.py`,开始测试,会看到如下预测结果(以下为训练70个pass所得模型的部分预测结果): | ||
|
|
||
| ``` | ||
| leicestershire B-ORG B-LOC | ||
| extended O O | ||
| their O O | ||
| first O O | ||
| innings O O | ||
| by O O | ||
| DGDG O O | ||
| runs O O | ||
| before O O | ||
| being O O | ||
| bowled O O | ||
| out O O | ||
| for O O | ||
| 296 O O | ||
| with O O | ||
| england B-LOC B-LOC | ||
| discard O O | ||
| andy B-PER B-PER | ||
| caddick I-PER I-PER | ||
| taking O O | ||
| three O O | ||
| for O O | ||
| DGDG O O | ||
| . O O | ||
| ``` | ||
|
||
|
|
||
| 输出分为三列,以“\t” 分隔,第一列是输入的词语,第二列是标准结果,第三列为生成的标记结果。多条输入序列之间以空行分隔。 | ||
|
|
||
| ## 真实结果示例 | ||
|
||
|
|
||
| <p align="center"> | ||
| <img src="imgs/convergent_curve.png" width="80%" align="center"/><br/> | ||
|
||
| 图1. Fluid下实验结果示例 | ||
|
||
| </p> | ||
|
|
||
|
|
||
| ## 参考文献 | ||
|
|
||
| 1. Graves A. [Supervised Sequence Labelling with Recurrent Neural Networks](http://www.cs.toronto.edu/~graves/preprint.pdf)[J]. Studies in Computational Intelligence, 2013, 385. | ||
| 2. Collobert R, Weston J, Bottou L, et al. [Natural Language Processing (Almost) from Scratch](http://www.jmlr.org/papers/volume12/collobert11a/collobert11a.pdf)[J]. Journal of Machine Learning Research, 2011, 12(1):2493-2537. | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,16 @@ | ||
| if [ -f assignment2.zip ]; then | ||
|
||
| echo "data exist" | ||
| else | ||
| wget http://cs224d.stanford.edu/assignment2/assignment2.zip | ||
| fi | ||
|
|
||
| if [ $? -eq 0 ];then | ||
| unzip assignment2.zip | ||
| cp assignment2_release/data/ner/wordVectors.txt ./data | ||
| cp assignment2_release/data/ner/vocab.txt ./data | ||
| rm -rf assignment2.zip assignment2_release | ||
| else | ||
| echo "download data error!" >> /dev/stderr | ||
| exit 1 | ||
| fi | ||
|
|
||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,9 @@ | ||
| B-LOC | ||
|
||
| I-LOC | ||
| B-MISC | ||
| I-MISC | ||
| B-ORG | ||
| I-ORG | ||
| B-PER | ||
| I-PER | ||
| O | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,128 @@ | ||
| CRICKET NNP I-NP O | ||
| - : O O | ||
|
||
| LEICESTERSHIRE NNP I-NP I-ORG | ||
| TAKE NNP I-NP O | ||
| OVER IN I-PP O | ||
| AT NNP I-NP O | ||
| TOP NNP I-NP O | ||
| AFTER NNP I-NP O | ||
| INNINGS NNP I-NP O | ||
| VICTORY NN I-NP O | ||
| . . O O | ||
|
|
||
| LONDON NNP I-NP I-LOC | ||
| 1996-08-30 CD I-NP O | ||
|
|
||
| West NNP I-NP I-MISC | ||
| Indian NNP I-NP I-MISC | ||
| all-rounder NN I-NP O | ||
| Phil NNP I-NP I-PER | ||
| Simmons NNP I-NP I-PER | ||
| took VBD I-VP O | ||
| four CD I-NP O | ||
| for IN I-PP O | ||
| 38 CD I-NP O | ||
| on IN I-PP O | ||
| Friday NNP I-NP O | ||
| as IN I-PP O | ||
| Leicestershire NNP I-NP I-ORG | ||
| beat VBD I-VP O | ||
| Somerset NNP I-NP I-ORG | ||
| by IN I-PP O | ||
| an DT I-NP O | ||
| innings NN I-NP O | ||
| and CC O O | ||
| 39 CD I-NP O | ||
| runs NNS I-NP O | ||
| in IN I-PP O | ||
| two CD I-NP O | ||
| days NNS I-NP O | ||
| to TO I-VP O | ||
| take VB I-VP O | ||
| over IN I-PP O | ||
| at IN B-PP O | ||
| the DT I-NP O | ||
| head NN I-NP O | ||
| of IN I-PP O | ||
| the DT I-NP O | ||
| county NN I-NP O | ||
| championship NN I-NP O | ||
| . . O O | ||
|
|
||
| Their PRP$ I-NP O | ||
| stay NN I-NP O | ||
| on IN I-PP O | ||
| top NN I-NP O | ||
| , , O O | ||
| though RB I-ADVP O | ||
| , , O O | ||
| may MD I-VP O | ||
| be VB I-VP O | ||
| short-lived JJ I-ADJP O | ||
| as IN I-PP O | ||
| title NN I-NP O | ||
| rivals NNS I-NP O | ||
| Essex NNP I-NP I-ORG | ||
| , , O O | ||
| Derbyshire NNP I-NP I-ORG | ||
| and CC I-NP O | ||
| Surrey NNP I-NP I-ORG | ||
| all DT O O | ||
| closed VBD I-VP O | ||
| in RP I-PRT O | ||
| on IN I-PP O | ||
| victory NN I-NP O | ||
| while IN I-SBAR O | ||
| Kent NNP I-NP I-ORG | ||
| made VBD I-VP O | ||
| up RP I-PRT O | ||
| for IN I-PP O | ||
| lost VBN I-NP O | ||
| time NN I-NP O | ||
| in IN I-PP O | ||
| their PRP$ I-NP O | ||
| rain-affected JJ I-NP O | ||
| match NN I-NP O | ||
| against IN I-PP O | ||
| Nottinghamshire NNP I-NP I-ORG | ||
| . . O O | ||
|
|
||
| After IN I-PP O | ||
| bowling VBG I-NP O | ||
| Somerset NNP I-NP I-ORG | ||
| out RP I-PRT O | ||
| for IN I-PP O | ||
| 83 CD I-NP O | ||
| on IN I-PP O | ||
| the DT I-NP O | ||
| opening NN I-NP O | ||
| morning NN I-NP O | ||
| at IN I-PP O | ||
| Grace NNP I-NP I-LOC | ||
| Road NNP I-NP I-LOC | ||
| , , O O | ||
| Leicestershire NNP I-NP I-ORG | ||
| extended VBD I-VP O | ||
| their PRP$ I-NP O | ||
| first JJ I-NP O | ||
| innings NN I-NP O | ||
| by IN I-PP O | ||
| 94 CD I-NP O | ||
| runs VBZ I-VP O | ||
| before IN I-PP O | ||
| being VBG I-VP O | ||
| bowled VBD I-VP O | ||
| out RP I-PRT O | ||
| for IN I-PP O | ||
| 296 CD I-NP O | ||
| with IN I-PP O | ||
| England NNP I-NP I-LOC | ||
| discard VBP I-VP O | ||
| Andy NNP I-NP I-PER | ||
| Caddick NNP I-NP I-PER | ||
| taking VBG I-VP O | ||
| three CD I-NP O | ||
| for IN I-PP O | ||
| 83 CD I-NP O | ||
| . . O O | ||
|
|
||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
如果和原来v2示例的内容相同的话,建议删掉。其他一些数据和脚本文件类似。可以说明参考原先的内容。
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
内容上还是存在着一些差别,为了方便读者使用,还是予以保留了。
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
README里面重复内容太多,Github上面官方repo 如果背景介绍部分的文字完全相同,不可以直接Copy。
文字完全相同的部分请添加链接。不能直接复制。