Skip to content

ROCm/gpuaidev

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AI Developer Hub

Welcome to the AI Developer Hub repository! This project contains Jupyter Notebook tutorials and guides for training, fine-tuning, and inference using popular machine learning frameworks on AMD GPUs.

Current Notebooks

Category Title GitHub Link AMD Tutorial Page
Inference Tutorials ChatQnA vLLM deployment and performance evaluation GitHub AMD Tutorial
Text-to-video generation with ComfyUI on Radeon GPU GitHub AMD Tutorial
DeepSeek Janus Pro on CPU or GPU GitHub AMD Tutorial
DeepSeek-R1 with vLLM V1 GitHub AMD Tutorial
AI agent with MCPs using vLLM and PydanticAI GitHub AMD Tutorial
Multi-agents with Google ADK and A2A protocol GitHub AMD Tutorial
Hugging Face Transformers GitHub AMD Tutorial
Deploying with vLLM GitHub AMD Tutorial
From chatbot to rap bot with vLLM GitHub AMD Tutorial
RAG with LlamaIndex and Ollama GitHub AMD Tutorial
OCR with vision-language models with vLLM GitHub AMD Tutorial
Building AI pipelines for voice assistants GitHub AMD Tutorial
Speculative decoding with vLLM GitHub AMD Tutorial
DeepSeekR1 with SGLang and example applications GitHub AMD Tutorial
PD disaggregation with SGLang GitHub AMD Tutorial
Accelerating DeepSeek-V3 inference using multi-token prediction in SGLang GitHub AMD Tutorial
Fine-Tuning Tutorials Customize Qwen-Image with DiffSynth-Studio GitHub AMD Tutorial
VLM with PEFT GitHub AMD Tutorial
Llama-3.1 8B with torchtune GitHub AMD Tutorial
Llama-3.1 8B with Llama Factory GitHub AMD Tutorial
GRPO with Unsloth GitHub AMD Tutorial
Pretraining Tutorials Training configuration with Megatron-LM GitHub AMD Tutorial
LLM with Megatron-LM GitHub AMD Tutorial
Llama-3.1 8B with torchtitan GitHub AMD Tutorial
Draft model training with SGLang SpecForge GitHub AMD Tutorial
Custom diffusion model GitHub AMD Tutorial
Pretraining with TorchTitan GitHub AMD Tutorial
Training a model with Primus GitHub AMD Tutorial
GPU Development and Optimization Tutorials Accelerating Quark MXFP4 quantization for vLLM GitHub AMD Tutorial
Kernel development and optimizations with Triton GitHub AMD Tutorial
Profiling Llama-4 inference with vLLM GitHub AMD Tutorial
FP8 quantization with AMD Quark for vLLM GitHub AMD Tutorial
About Licensing and Support Information GitHub AMD Tutorial

Repository Structure

The tutorials are organized into four main categories:

  • Fine-Tuning: Examples and guides for fine-tuning machine learning models.
  • Pretraining: Tutorials on pretraining models from scratch.
  • Inference: Resources for running inference with trained models.
  • GPU development and optimization: Resources for optimizing AI compute and kernel development on GPUs.

Directory Layout

github_repo/
├── docs/                          # Documentation for the tutorials
│   ├── index.md                   # Main documentation index
│   ├── fine_tune.md               # Fine-tuning tutorials index
│   ├── pretrain.md                # Pretraining tutorials index
│   ├── inference.md               # Inference tutorials index
│   └── notebooks/                 # Jupyter notebooks organized by category
│       ├── gpu_dev_optimize/      # GPU development and optimization notebooks
│       ├── fine_tune/             # Fine-tuning notebooks
│       ├── pretrain/              # Pretraining notebooks
│       └── inference/             # Inference notebooks

About

Repository to host ROCm Developer Hub Notebook Tutorials

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 24