forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 4
touchscreen support for BUSH Windows tablet #3
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
akiyks
pushed a commit
that referenced
this pull request
Sep 21, 2023
Hou Tao says: ==================== Fix the unmatched unit_size of bpf_mem_cache From: Hou Tao <[email protected]> Hi, The patchset aims to fix the reported warning [0] when the unit_size of bpf_mem_cache is mismatched with the object size of underly slab-cache. Patch #1 fixes the warning by adjusting size_index according to the value of KMALLOC_MIN_SIZE, so bpf_mem_cache with unit_size which is smaller than KMALLOC_MIN_SIZE or is not aligned with KMALLOC_MIN_SIZE will be redirected to bpf_mem_cache with bigger unit_size. Patch #2 doesn't do prefill for these redirected bpf_mem_cache to save memory. Patch #3 adds further error check in bpf_mem_alloc_init() to ensure the unit_size and object_size are always matched and to prevent potential issues due to the mismatch. Please see individual patches for more details. And comments are always welcome. [0]: https://lore.kernel.org/bpf/[email protected] ==================== Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Alexei Starovoitov <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Sep 21, 2023
Syzkaller reported a sleep in atomic context bug relating to the HASHCHK handler logic: BUG: sleeping function called from invalid context at arch/powerpc/kernel/traps.c:1518 in_atomic(): 0, irqs_disabled(): 1, non_block: 0, pid: 25040, name: syz-executor preempt_count: 0, expected: 0 RCU nest depth: 0, expected: 0 no locks held by syz-executor/25040. irq event stamp: 34 hardirqs last enabled at (33): [<c000000000048b38>] prep_irq_for_enabled_exit arch/powerpc/kernel/interrupt.c:56 [inline] hardirqs last enabled at (33): [<c000000000048b38>] interrupt_exit_user_prepare_main+0x148/0x600 arch/powerpc/kernel/interrupt.c:230 hardirqs last disabled at (34): [<c00000000003e6a4>] interrupt_enter_prepare+0x144/0x4f0 arch/powerpc/include/asm/interrupt.h:176 softirqs last enabled at (0): [<c000000000281954>] copy_process+0x16e4/0x4750 kernel/fork.c:2436 softirqs last disabled at (0): [<0000000000000000>] 0x0 CPU: 15 PID: 25040 Comm: syz-executor Not tainted 6.5.0-rc5-00001-g3ccdff6bb06d #3 Hardware name: IBM,9105-22A POWER10 (raw) 0x800200 0xf000006 of:IBM,FW1040.00 (NL1040_021) hv:phyp pSeries Call Trace: [c0000000a8247ce0] [c00000000032b0e4] __might_resched+0x3b4/0x400 kernel/sched/core.c:10189 [c0000000a8247d80] [c0000000008c7dc8] __might_fault+0xa8/0x170 mm/memory.c:5853 [c0000000a8247dc0] [c00000000004160c] do_program_check+0x32c/0xb20 arch/powerpc/kernel/traps.c:1518 [c0000000a8247e50] [c000000000009b2c] program_check_common_virt+0x3bc/0x3c0 To determine if a trap was caused by a HASHCHK instruction, we inspect the user instruction that triggered the trap. However this may sleep if the page needs to be faulted in (get_user_instr() reaches __get_user(), which calls might_fault() and triggers the bug message). Move the HASHCHK handler logic to after we allow IRQs, which is fine because we are only interested in HASHCHK if it's a user space trap. Fixes: 5bcba4e ("powerpc/dexcr: Handle hashchk exception") Signed-off-by: Benjamin Gray <[email protected]> Signed-off-by: Michael Ellerman <[email protected]> Link: https://msgid.link/[email protected]
akiyks
pushed a commit
that referenced
this pull request
Sep 21, 2023
Sebastian Andrzej Siewior says: ==================== net: hsr: Properly parse HSRv1 supervisor frames. this is a follow-up to https://lore.kernel.org/all/[email protected]/ replacing https://lore.kernel.org/all/[email protected]/ by grabing/ adding tags and reposting with a commit message plus a missing __packed to a struct (#2) plus extending the testsuite to sover HSRv1 which is what broke here (#3-#5). HSRv0 is (was) not affected. ==================== Signed-off-by: David S. Miller <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Sep 25, 2023
Fuzzing found that an invalid tracepoint name would create a memory
leak with an address sanitizer build:
```
$ perf stat -e '*:o/' true
event syntax error: '*:o/'
\___ parser error
Run 'perf list' for a list of valid events
Usage: perf stat [<options>] [<command>]
-e, --event <event> event selector. use 'perf list' to list available events
=================================================================
==59380==ERROR: LeakSanitizer: detected memory leaks
Direct leak of 4 byte(s) in 2 object(s) allocated from:
#0 0x7f38ac07077b in __interceptor_strdup ../../../../src/libsanitizer/asan/asan_interceptors.cpp:439
#1 0x55f2f41be73b in str util/parse-events.l:49
#2 0x55f2f41d08e8 in parse_events_lex util/parse-events.l:338
#3 0x55f2f41dc3b1 in parse_events_parse util/parse-events-bison.c:1464
#4 0x55f2f410b8b3 in parse_events__scanner util/parse-events.c:1822
#5 0x55f2f410d1b9 in __parse_events util/parse-events.c:2094
torvalds#6 0x55f2f410e57f in parse_events_option util/parse-events.c:2279
torvalds#7 0x55f2f4427b56 in get_value tools/lib/subcmd/parse-options.c:251
torvalds#8 0x55f2f4428d98 in parse_short_opt tools/lib/subcmd/parse-options.c:351
torvalds#9 0x55f2f4429d80 in parse_options_step tools/lib/subcmd/parse-options.c:539
torvalds#10 0x55f2f442acb9 in parse_options_subcommand tools/lib/subcmd/parse-options.c:654
torvalds#11 0x55f2f3ec99fc in cmd_stat tools/perf/builtin-stat.c:2501
torvalds#12 0x55f2f4093289 in run_builtin tools/perf/perf.c:322
torvalds#13 0x55f2f40937f5 in handle_internal_command tools/perf/perf.c:375
torvalds#14 0x55f2f4093bbd in run_argv tools/perf/perf.c:419
torvalds#15 0x55f2f409412b in main tools/perf/perf.c:535
SUMMARY: AddressSanitizer: 4 byte(s) leaked in 2 allocation(s).
```
Fix by adding the missing destructor.
Fixes: 865582c ("perf tools: Adds the tracepoint name parsing support")
Signed-off-by: Ian Rogers <[email protected]>
Cc: He Kuang <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Namhyung Kim <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Sep 27, 2023
Fix an error detected by memory sanitizer:
```
==4033==WARNING: MemorySanitizer: use-of-uninitialized-value
#0 0x55fb0fbedfc7 in read_alias_info tools/perf/util/pmu.c:457:6
#1 0x55fb0fbea339 in check_info_data tools/perf/util/pmu.c:1434:2
#2 0x55fb0fbea339 in perf_pmu__check_alias tools/perf/util/pmu.c:1504:9
#3 0x55fb0fbdca85 in parse_events_add_pmu tools/perf/util/parse-events.c:1429:32
#4 0x55fb0f965230 in parse_events_parse tools/perf/util/parse-events.y:299:6
#5 0x55fb0fbdf6b2 in parse_events__scanner tools/perf/util/parse-events.c:1822:8
torvalds#6 0x55fb0fbdf8c1 in __parse_events tools/perf/util/parse-events.c:2094:8
torvalds#7 0x55fb0fa8ffa9 in parse_events tools/perf/util/parse-events.h:41:9
torvalds#8 0x55fb0fa8ffa9 in test_event tools/perf/tests/parse-events.c:2393:8
torvalds#9 0x55fb0fa8f458 in test__pmu_events tools/perf/tests/parse-events.c:2551:15
torvalds#10 0x55fb0fa6d93f in run_test tools/perf/tests/builtin-test.c:242:9
torvalds#11 0x55fb0fa6d93f in test_and_print tools/perf/tests/builtin-test.c:271:8
torvalds#12 0x55fb0fa6d082 in __cmd_test tools/perf/tests/builtin-test.c:442:5
torvalds#13 0x55fb0fa6d082 in cmd_test tools/perf/tests/builtin-test.c:564:9
torvalds#14 0x55fb0f942720 in run_builtin tools/perf/perf.c:322:11
torvalds#15 0x55fb0f942486 in handle_internal_command tools/perf/perf.c:375:8
torvalds#16 0x55fb0f941dab in run_argv tools/perf/perf.c:419:2
torvalds#17 0x55fb0f941dab in main tools/perf/perf.c:535:3
```
Fixes: 7b723db ("perf pmu: Be lazy about loading event info files from sysfs")
Signed-off-by: Ian Rogers <[email protected]>
Cc: James Clark <[email protected]>
Cc: Kan Liang <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Namhyung Kim <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Sep 28, 2023
Fix the deadlock by refactoring the MR cache cleanup flow to flush the workqueue without holding the rb_lock. This adds a race between cache cleanup and creation of new entries which we solve by denied creation of new entries after cache cleanup started. Lockdep: WARNING: possible circular locking dependency detected [ 2785.326074 ] 6.2.0-rc6_for_upstream_debug_2023_01_31_14_02 #1 Not tainted [ 2785.339778 ] ------------------------------------------------------ [ 2785.340848 ] devlink/53872 is trying to acquire lock: [ 2785.341701 ] ffff888124f8c0c8 ((work_completion)(&(&ent->dwork)->work)){+.+.}-{0:0}, at: __flush_work+0xc8/0x900 [ 2785.343403 ] [ 2785.343403 ] but task is already holding lock: [ 2785.344464 ] ffff88817e8f1260 (&dev->cache.rb_lock){+.+.}-{3:3}, at: mlx5_mkey_cache_cleanup+0x77/0x250 [mlx5_ib] [ 2785.346273 ] [ 2785.346273 ] which lock already depends on the new lock. [ 2785.346273 ] [ 2785.347720 ] [ 2785.347720 ] the existing dependency chain (in reverse order) is: [ 2785.349003 ] [ 2785.349003 ] -> #1 (&dev->cache.rb_lock){+.+.}-{3:3}: [ 2785.350160 ] __mutex_lock+0x14c/0x15c0 [ 2785.350962 ] delayed_cache_work_func+0x2d1/0x610 [mlx5_ib] [ 2785.352044 ] process_one_work+0x7c2/0x1310 [ 2785.352879 ] worker_thread+0x59d/0xec0 [ 2785.353636 ] kthread+0x28f/0x330 [ 2785.354370 ] ret_from_fork+0x1f/0x30 [ 2785.355135 ] [ 2785.355135 ] -> #0 ((work_completion)(&(&ent->dwork)->work)){+.+.}-{0:0}: [ 2785.356515 ] __lock_acquire+0x2d8a/0x5fe0 [ 2785.357349 ] lock_acquire+0x1c1/0x540 [ 2785.358121 ] __flush_work+0xe8/0x900 [ 2785.358852 ] __cancel_work_timer+0x2c7/0x3f0 [ 2785.359711 ] mlx5_mkey_cache_cleanup+0xfb/0x250 [mlx5_ib] [ 2785.360781 ] mlx5_ib_stage_pre_ib_reg_umr_cleanup+0x16/0x30 [mlx5_ib] [ 2785.361969 ] __mlx5_ib_remove+0x68/0x120 [mlx5_ib] [ 2785.362960 ] mlx5r_remove+0x63/0x80 [mlx5_ib] [ 2785.363870 ] auxiliary_bus_remove+0x52/0x70 [ 2785.364715 ] device_release_driver_internal+0x3c1/0x600 [ 2785.365695 ] bus_remove_device+0x2a5/0x560 [ 2785.366525 ] device_del+0x492/0xb80 [ 2785.367276 ] mlx5_detach_device+0x1a9/0x360 [mlx5_core] [ 2785.368615 ] mlx5_unload_one_devl_locked+0x5a/0x110 [mlx5_core] [ 2785.369934 ] mlx5_devlink_reload_down+0x292/0x580 [mlx5_core] [ 2785.371292 ] devlink_reload+0x439/0x590 [ 2785.372075 ] devlink_nl_cmd_reload+0xaef/0xff0 [ 2785.372973 ] genl_family_rcv_msg_doit.isra.0+0x1bd/0x290 [ 2785.374011 ] genl_rcv_msg+0x3ca/0x6c0 [ 2785.374798 ] netlink_rcv_skb+0x12c/0x360 [ 2785.375612 ] genl_rcv+0x24/0x40 [ 2785.376295 ] netlink_unicast+0x438/0x710 [ 2785.377121 ] netlink_sendmsg+0x7a1/0xca0 [ 2785.377926 ] sock_sendmsg+0xc5/0x190 [ 2785.378668 ] __sys_sendto+0x1bc/0x290 [ 2785.379440 ] __x64_sys_sendto+0xdc/0x1b0 [ 2785.380255 ] do_syscall_64+0x3d/0x90 [ 2785.381031 ] entry_SYSCALL_64_after_hwframe+0x46/0xb0 [ 2785.381967 ] [ 2785.381967 ] other info that might help us debug this: [ 2785.381967 ] [ 2785.383448 ] Possible unsafe locking scenario: [ 2785.383448 ] [ 2785.384544 ] CPU0 CPU1 [ 2785.385383 ] ---- ---- [ 2785.386193 ] lock(&dev->cache.rb_lock); [ 2785.386940 ] lock((work_completion)(&(&ent->dwork)->work)); [ 2785.388327 ] lock(&dev->cache.rb_lock); [ 2785.389425 ] lock((work_completion)(&(&ent->dwork)->work)); [ 2785.390414 ] [ 2785.390414 ] *** DEADLOCK *** [ 2785.390414 ] [ 2785.391579 ] 6 locks held by devlink/53872: [ 2785.392341 ] #0: ffffffff84c17a50 (cb_lock){++++}-{3:3}, at: genl_rcv+0x15/0x40 [ 2785.393630 ] #1: ffff888142280218 (&devlink->lock_key){+.+.}-{3:3}, at: devlink_get_from_attrs_lock+0x12d/0x2d0 [ 2785.395324 ] #2: ffff8881422d3c38 (&dev->lock_key){+.+.}-{3:3}, at: mlx5_unload_one_devl_locked+0x4a/0x110 [mlx5_core] [ 2785.397322 ] #3: ffffffffa0e59068 (mlx5_intf_mutex){+.+.}-{3:3}, at: mlx5_detach_device+0x60/0x360 [mlx5_core] [ 2785.399231 ] #4: ffff88810e3cb0e8 (&dev->mutex){....}-{3:3}, at: device_release_driver_internal+0x8d/0x600 [ 2785.400864 ] #5: ffff88817e8f1260 (&dev->cache.rb_lock){+.+.}-{3:3}, at: mlx5_mkey_cache_cleanup+0x77/0x250 [mlx5_ib] Fixes: b958451 ("RDMA/mlx5: Change the cache structure to an RB-tree") Signed-off-by: Shay Drory <[email protected]> Signed-off-by: Michael Guralnik <[email protected]> Signed-off-by: Leon Romanovsky <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Sep 28, 2023
The following call trace shows a deadlock issue due to recursive locking of mutex "device_mutex". First lock acquire is in target_for_each_device() and second in target_free_device(). PID: 148266 TASK: ffff8be21ffb5d00 CPU: 10 COMMAND: "iscsi_ttx" #0 [ffffa2bfc9ec3b18] __schedule at ffffffffa8060e7f #1 [ffffa2bfc9ec3ba0] schedule at ffffffffa8061224 #2 [ffffa2bfc9ec3bb8] schedule_preempt_disabled at ffffffffa80615ee #3 [ffffa2bfc9ec3bc8] __mutex_lock at ffffffffa8062fd7 #4 [ffffa2bfc9ec3c40] __mutex_lock_slowpath at ffffffffa80631d3 #5 [ffffa2bfc9ec3c50] mutex_lock at ffffffffa806320c torvalds#6 [ffffa2bfc9ec3c68] target_free_device at ffffffffc0935998 [target_core_mod] torvalds#7 [ffffa2bfc9ec3c90] target_core_dev_release at ffffffffc092f975 [target_core_mod] torvalds#8 [ffffa2bfc9ec3ca0] config_item_put at ffffffffa79d250f torvalds#9 [ffffa2bfc9ec3cd0] config_item_put at ffffffffa79d2583 torvalds#10 [ffffa2bfc9ec3ce0] target_devices_idr_iter at ffffffffc0933f3a [target_core_mod] torvalds#11 [ffffa2bfc9ec3d00] idr_for_each at ffffffffa803f6fc torvalds#12 [ffffa2bfc9ec3d60] target_for_each_device at ffffffffc0935670 [target_core_mod] torvalds#13 [ffffa2bfc9ec3d98] transport_deregister_session at ffffffffc0946408 [target_core_mod] torvalds#14 [ffffa2bfc9ec3dc8] iscsit_close_session at ffffffffc09a44a6 [iscsi_target_mod] torvalds#15 [ffffa2bfc9ec3df0] iscsit_close_connection at ffffffffc09a4a88 [iscsi_target_mod] torvalds#16 [ffffa2bfc9ec3df8] finish_task_switch at ffffffffa76e5d07 torvalds#17 [ffffa2bfc9ec3e78] iscsit_take_action_for_connection_exit at ffffffffc0991c23 [iscsi_target_mod] torvalds#18 [ffffa2bfc9ec3ea0] iscsi_target_tx_thread at ffffffffc09a403b [iscsi_target_mod] torvalds#19 [ffffa2bfc9ec3f08] kthread at ffffffffa76d8080 torvalds#20 [ffffa2bfc9ec3f50] ret_from_fork at ffffffffa8200364 Fixes: 36d4cb4 ("scsi: target: Avoid that EXTENDED COPY commands trigger lock inversion") Signed-off-by: Junxiao Bi <[email protected]> Link: https://lore.kernel.org/r/[email protected] Reviewed-by: Mike Christie <[email protected]> Signed-off-by: Martin K. Petersen <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 4, 2023
Petr Machata says: ==================== mlxsw: Provide enhancements and new feature Vadim Pasternak writes: Patch #1 - Optimize transaction size for efficient retrieval of module data. Patch #3 - Enable thermal zone binding with new cooling device. Patch #4 - Employ standard macros for dividing buffer into the chunks. ==================== Signed-off-by: David S. Miller <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 4, 2023
Patch series "mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()". Convert page_move_anon_rmap() to folio_move_anon_rmap(), letting the callers handle PageAnonExclusive. I'm including cleanup patch #3 because it fits into the picture and can be done cleaner by the conversion. This patch (of 3): Let's move it into the caller: there is a difference between whether an anon folio can only be mapped by one process (e.g., into one VMA), and whether it is truly exclusive (e.g., no references -- including GUP -- from other processes). Further, for large folios the page might not actually be pointing at the head page of the folio, so it better be handled in the caller. This is a preparation for converting page_move_anon_rmap() to consume a folio. Link: https://lkml.kernel.org/r/[email protected] Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: David Hildenbrand <[email protected]> Cc: Mike Kravetz <[email protected]> Cc: Muchun Song <[email protected]> Cc: Suren Baghdasaryan <[email protected]> Cc: Matthew Wilcox <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 5, 2023
Patch series "mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()". Convert page_move_anon_rmap() to folio_move_anon_rmap(), letting the callers handle PageAnonExclusive. I'm including cleanup patch #3 because it fits into the picture and can be done cleaner by the conversion. This patch (of 3): Let's move it into the caller: there is a difference between whether an anon folio can only be mapped by one process (e.g., into one VMA), and whether it is truly exclusive (e.g., no references -- including GUP -- from other processes). Further, for large folios the page might not actually be pointing at the head page of the folio, so it better be handled in the caller. This is a preparation for converting page_move_anon_rmap() to consume a folio. Link: https://lkml.kernel.org/r/[email protected] Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: David Hildenbrand <[email protected]> Reviewed-by: Suren Baghdasaryan <[email protected]> Reviewed-by: Vishal Moola (Oracle) <[email protected]> Cc: Mike Kravetz <[email protected]> Cc: Muchun Song <[email protected]> Cc: Matthew Wilcox <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
Owner
|
Hi @stpf99, This repository is a fork for my personal use only. Let me close this now. Regards. |
akiyks
pushed a commit
that referenced
this pull request
Oct 9, 2023
Patch series "mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()". Convert page_move_anon_rmap() to folio_move_anon_rmap(), letting the callers handle PageAnonExclusive. I'm including cleanup patch #3 because it fits into the picture and can be done cleaner by the conversion. This patch (of 3): Let's move it into the caller: there is a difference between whether an anon folio can only be mapped by one process (e.g., into one VMA), and whether it is truly exclusive (e.g., no references -- including GUP -- from other processes). Further, for large folios the page might not actually be pointing at the head page of the folio, so it better be handled in the caller. This is a preparation for converting page_move_anon_rmap() to consume a folio. Link: https://lkml.kernel.org/r/[email protected] Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: David Hildenbrand <[email protected]> Reviewed-by: Suren Baghdasaryan <[email protected]> Reviewed-by: Vishal Moola (Oracle) <[email protected]> Cc: Mike Kravetz <[email protected]> Cc: Muchun Song <[email protected]> Cc: Matthew Wilcox <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 11, 2023
Patch series "mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()". Convert page_move_anon_rmap() to folio_move_anon_rmap(), letting the callers handle PageAnonExclusive. I'm including cleanup patch #3 because it fits into the picture and can be done cleaner by the conversion. This patch (of 3): Let's move it into the caller: there is a difference between whether an anon folio can only be mapped by one process (e.g., into one VMA), and whether it is truly exclusive (e.g., no references -- including GUP -- from other processes). Further, for large folios the page might not actually be pointing at the head page of the folio, so it better be handled in the caller. This is a preparation for converting page_move_anon_rmap() to consume a folio. Link: https://lkml.kernel.org/r/[email protected] Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: David Hildenbrand <[email protected]> Reviewed-by: Suren Baghdasaryan <[email protected]> Reviewed-by: Vishal Moola (Oracle) <[email protected]> Cc: Mike Kravetz <[email protected]> Cc: Muchun Song <[email protected]> Cc: Matthew Wilcox <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 12, 2023
The smp_processor_id() shouldn't be called from preemptible code. Instead use get_cpu() and put_cpu() which disables preemption in addition to getting the processor id. Enable preemption back after calling schedule_work() to make sure that the work gets scheduled on all cores other than the current core. We want to avoid a scenario where current core's stack trace is printed multiple times and one core's stack trace isn't printed because of scheduling of current task. This fixes the following bug: [ 119.143590] sysrq: Show backtrace of all active CPUs [ 119.143902] BUG: using smp_processor_id() in preemptible [00000000] code: bash/873 [ 119.144586] caller is debug_smp_processor_id+0x20/0x30 [ 119.144827] CPU: 6 PID: 873 Comm: bash Not tainted 5.10.124-dirty #3 [ 119.144861] Hardware name: QEMU QEMU Virtual Machine, BIOS 2023.05-1 07/22/2023 [ 119.145053] Call trace: [ 119.145093] dump_backtrace+0x0/0x1a0 [ 119.145122] show_stack+0x18/0x70 [ 119.145141] dump_stack+0xc4/0x11c [ 119.145159] check_preemption_disabled+0x100/0x110 [ 119.145175] debug_smp_processor_id+0x20/0x30 [ 119.145195] sysrq_handle_showallcpus+0x20/0xc0 [ 119.145211] __handle_sysrq+0x8c/0x1a0 [ 119.145227] write_sysrq_trigger+0x94/0x12c [ 119.145247] proc_reg_write+0xa8/0xe4 [ 119.145266] vfs_write+0xec/0x280 [ 119.145282] ksys_write+0x6c/0x100 [ 119.145298] __arm64_sys_write+0x20/0x30 [ 119.145315] el0_svc_common.constprop.0+0x78/0x1e4 [ 119.145332] do_el0_svc+0x24/0x8c [ 119.145348] el0_svc+0x10/0x20 [ 119.145364] el0_sync_handler+0x134/0x140 [ 119.145381] el0_sync+0x180/0x1c0 Cc: [email protected] Cc: [email protected] Fixes: 47cab6a ("debug lockups: Improve lockup detection, fix generic arch fallback") Signed-off-by: Muhammad Usama Anjum <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Greg Kroah-Hartman <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 12, 2023
Patch series "mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()". Convert page_move_anon_rmap() to folio_move_anon_rmap(), letting the callers handle PageAnonExclusive. I'm including cleanup patch #3 because it fits into the picture and can be done cleaner by the conversion. This patch (of 3): Let's move it into the caller: there is a difference between whether an anon folio can only be mapped by one process (e.g., into one VMA), and whether it is truly exclusive (e.g., no references -- including GUP -- from other processes). Further, for large folios the page might not actually be pointing at the head page of the folio, so it better be handled in the caller. This is a preparation for converting page_move_anon_rmap() to consume a folio. Link: https://lkml.kernel.org/r/[email protected] Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: David Hildenbrand <[email protected]> Reviewed-by: Suren Baghdasaryan <[email protected]> Reviewed-by: Vishal Moola (Oracle) <[email protected]> Cc: Mike Kravetz <[email protected]> Cc: Muchun Song <[email protected]> Cc: Matthew Wilcox <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 16, 2023
Amit Cohen says: ==================== Extend VXLAN driver to support FDB flushing The merge commit 9271686 ("Merge branch 'br-flush-filtering'") added support for FDB flushing in bridge driver. Extend VXLAN driver to support FDB flushing also. Add support for filtering by fields which are relevant for VXLAN FDBs: * Source VNI * Nexthop ID * 'router' flag * Destination VNI * Destination Port * Destination IP Without this set, flush for VXLAN device fails: $ bridge fdb flush dev vx10 RTNETLINK answers: Operation not supported With this set, such flush works with the relevant arguments, for example: $ bridge fdb flush dev vx10 vni 5000 dst 193.2.2.1 < flush all vx10 entries with VNI 5000 and destination IP 193.2.2.1> Some preparations are required, handle them before adding flushing support in VXLAN driver. See more details in commit messages. Patch set overview: Patch #1 prepares flush policy to be used by VXLAN driver Patches #2-#3 are preparations in VXLAN driver Patch #4 adds an initial support for flushing in VXLAN driver Patches #5-torvalds#9 add support for filtering by several attributes Patch torvalds#10 adds a test for FDB flush with VXLAN Patch torvalds#11 extends the test to check FDB flush with bridge ==================== Acked-by: Nikolay Aleksandrov <[email protected]> Signed-off-by: David S. Miller <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 16, 2023
Patch series "mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()". Convert page_move_anon_rmap() to folio_move_anon_rmap(), letting the callers handle PageAnonExclusive. I'm including cleanup patch #3 because it fits into the picture and can be done cleaner by the conversion. This patch (of 3): Let's move it into the caller: there is a difference between whether an anon folio can only be mapped by one process (e.g., into one VMA), and whether it is truly exclusive (e.g., no references -- including GUP -- from other processes). Further, for large folios the page might not actually be pointing at the head page of the folio, so it better be handled in the caller. This is a preparation for converting page_move_anon_rmap() to consume a folio. Link: https://lkml.kernel.org/r/[email protected] Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: David Hildenbrand <[email protected]> Reviewed-by: Suren Baghdasaryan <[email protected]> Reviewed-by: Vishal Moola (Oracle) <[email protected]> Cc: Mike Kravetz <[email protected]> Cc: Muchun Song <[email protected]> Cc: Matthew Wilcox <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 17, 2023
Andrii Nakryiko says: ==================== This patch set fixes ambiguity in BPF verifier log output of SCALAR register in the parts that emit umin/umax, smin/smax, etc ranges. See patch #4 for details. Also, patch #5 fixes an issue with verifier log missing instruction context (state) output for conditionals that trigger precision marking. See details in the patch. First two patches are just improvements to two selftests that are very flaky locally when run in parallel mode. Patch #3 changes 'align' selftest to be less strict about exact verifier log output (which patch #4 changes, breaking lots of align tests as written). Now test does more of a register substate checks, mostly around expected var_off() values. This 'align' selftests is one of the more brittle ones and requires constant adjustment when verifier log output changes, without really catching any new issues. So hopefully these changes can minimize future support efforts for this specific set of tests. ==================== Signed-off-by: Daniel Borkmann <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 18, 2023
Patch series "mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()". Convert page_move_anon_rmap() to folio_move_anon_rmap(), letting the callers handle PageAnonExclusive. I'm including cleanup patch #3 because it fits into the picture and can be done cleaner by the conversion. This patch (of 3): Let's move it into the caller: there is a difference between whether an anon folio can only be mapped by one process (e.g., into one VMA), and whether it is truly exclusive (e.g., no references -- including GUP -- from other processes). Further, for large folios the page might not actually be pointing at the head page of the folio, so it better be handled in the caller. This is a preparation for converting page_move_anon_rmap() to consume a folio. Link: https://lkml.kernel.org/r/[email protected] Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: David Hildenbrand <[email protected]> Reviewed-by: Suren Baghdasaryan <[email protected]> Reviewed-by: Vishal Moola (Oracle) <[email protected]> Cc: Mike Kravetz <[email protected]> Cc: Muchun Song <[email protected]> Cc: Matthew Wilcox <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 19, 2023
Lockdep reports following issue:
WARNING: possible circular locking dependency detected
------------------------------------------------------
devlink/8191 is trying to acquire lock:
ffff88813f32c250 (&devlink->lock_key#14){+.+.}-{3:3}, at: devlink_rel_devlink_handle_put+0x11e/0x2d0
but task is already holding lock:
ffffffff8511eca8 (rtnl_mutex){+.+.}-{3:3}, at: unregister_netdev+0xe/0x20
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #3 (rtnl_mutex){+.+.}-{3:3}:
lock_acquire+0x1c3/0x500
__mutex_lock+0x14c/0x1b20
register_netdevice_notifier_net+0x13/0x30
mlx5_lag_add_mdev+0x51c/0xa00 [mlx5_core]
mlx5_load+0x222/0xc70 [mlx5_core]
mlx5_init_one_devl_locked+0x4a0/0x1310 [mlx5_core]
mlx5_init_one+0x3b/0x60 [mlx5_core]
probe_one+0x786/0xd00 [mlx5_core]
local_pci_probe+0xd7/0x180
pci_device_probe+0x231/0x720
really_probe+0x1e4/0xb60
__driver_probe_device+0x261/0x470
driver_probe_device+0x49/0x130
__driver_attach+0x215/0x4c0
bus_for_each_dev+0xf0/0x170
bus_add_driver+0x21d/0x590
driver_register+0x133/0x460
vdpa_match_remove+0x89/0xc0 [vdpa]
do_one_initcall+0xc4/0x360
do_init_module+0x22d/0x760
load_module+0x51d7/0x6750
init_module_from_file+0xd2/0x130
idempotent_init_module+0x326/0x5a0
__x64_sys_finit_module+0xc1/0x130
do_syscall_64+0x3d/0x90
entry_SYSCALL_64_after_hwframe+0x46/0xb0
-> #2 (mlx5_intf_mutex){+.+.}-{3:3}:
lock_acquire+0x1c3/0x500
__mutex_lock+0x14c/0x1b20
mlx5_register_device+0x3e/0xd0 [mlx5_core]
mlx5_init_one_devl_locked+0x8fa/0x1310 [mlx5_core]
mlx5_devlink_reload_up+0x147/0x170 [mlx5_core]
devlink_reload+0x203/0x380
devlink_nl_cmd_reload+0xb84/0x10e0
genl_family_rcv_msg_doit+0x1cc/0x2a0
genl_rcv_msg+0x3c9/0x670
netlink_rcv_skb+0x12c/0x360
genl_rcv+0x24/0x40
netlink_unicast+0x435/0x6f0
netlink_sendmsg+0x7a0/0xc70
sock_sendmsg+0xc5/0x190
__sys_sendto+0x1c8/0x290
__x64_sys_sendto+0xdc/0x1b0
do_syscall_64+0x3d/0x90
entry_SYSCALL_64_after_hwframe+0x46/0xb0
-> #1 (&dev->lock_key#8){+.+.}-{3:3}:
lock_acquire+0x1c3/0x500
__mutex_lock+0x14c/0x1b20
mlx5_init_one_devl_locked+0x45/0x1310 [mlx5_core]
mlx5_devlink_reload_up+0x147/0x170 [mlx5_core]
devlink_reload+0x203/0x380
devlink_nl_cmd_reload+0xb84/0x10e0
genl_family_rcv_msg_doit+0x1cc/0x2a0
genl_rcv_msg+0x3c9/0x670
netlink_rcv_skb+0x12c/0x360
genl_rcv+0x24/0x40
netlink_unicast+0x435/0x6f0
netlink_sendmsg+0x7a0/0xc70
sock_sendmsg+0xc5/0x190
__sys_sendto+0x1c8/0x290
__x64_sys_sendto+0xdc/0x1b0
do_syscall_64+0x3d/0x90
entry_SYSCALL_64_after_hwframe+0x46/0xb0
-> #0 (&devlink->lock_key#14){+.+.}-{3:3}:
check_prev_add+0x1af/0x2300
__lock_acquire+0x31d7/0x4eb0
lock_acquire+0x1c3/0x500
__mutex_lock+0x14c/0x1b20
devlink_rel_devlink_handle_put+0x11e/0x2d0
devlink_nl_port_fill+0xddf/0x1b00
devlink_port_notify+0xb5/0x220
__devlink_port_type_set+0x151/0x510
devlink_port_netdevice_event+0x17c/0x220
notifier_call_chain+0x97/0x240
unregister_netdevice_many_notify+0x876/0x1790
unregister_netdevice_queue+0x274/0x350
unregister_netdev+0x18/0x20
mlx5e_vport_rep_unload+0xc5/0x1c0 [mlx5_core]
__esw_offloads_unload_rep+0xd8/0x130 [mlx5_core]
mlx5_esw_offloads_rep_unload+0x52/0x70 [mlx5_core]
mlx5_esw_offloads_unload_rep+0x85/0xc0 [mlx5_core]
mlx5_eswitch_unload_sf_vport+0x41/0x90 [mlx5_core]
mlx5_devlink_sf_port_del+0x120/0x280 [mlx5_core]
genl_family_rcv_msg_doit+0x1cc/0x2a0
genl_rcv_msg+0x3c9/0x670
netlink_rcv_skb+0x12c/0x360
genl_rcv+0x24/0x40
netlink_unicast+0x435/0x6f0
netlink_sendmsg+0x7a0/0xc70
sock_sendmsg+0xc5/0x190
__sys_sendto+0x1c8/0x290
__x64_sys_sendto+0xdc/0x1b0
do_syscall_64+0x3d/0x90
entry_SYSCALL_64_after_hwframe+0x46/0xb0
other info that might help us debug this:
Chain exists of:
&devlink->lock_key#14 --> mlx5_intf_mutex --> rtnl_mutex
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(rtnl_mutex);
lock(mlx5_intf_mutex);
lock(rtnl_mutex);
lock(&devlink->lock_key#14);
Problem is taking the devlink instance lock of nested instance when RTNL
is already held.
To fix this, don't take the devlink instance lock when putting nested
handle. Instead, rely on the preparations done by previous two patches
to be able to access device pointer and obtain netns id without devlink
instance lock held.
Fixes: c137743 ("devlink: introduce object and nested devlink relationship infra")
Signed-off-by: Jiri Pirko <[email protected]>
Reviewed-by: Simon Horman <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 19, 2023
Jiri Pirko says: ==================== devlink: fix a deadlock when taking devlink instance lock while holding RTNL lock devlink_port_fill() may be called sometimes with RTNL lock held. When putting the nested port function devlink instance attrs, current code takes nested devlink instance lock. In that case lock ordering is wrong. Patch #1 is a dependency of patch #2. Patch #2 converts the peernet2id_alloc() call to rely in RCU so it could called without devlink instance lock. Patch #3 takes device reference for devlink instance making sure that device does not disappear before devlink_release() is called. Patch #4 benefits from the preparations done in patches #2 and #3 and removes the problematic nested devlink lock aquisition. Patched #5-torvalds#7 improve documentation to reflect this issue so it is avoided in the future. ==================== Signed-off-by: David S. Miller <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 19, 2023
Patch series "mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()". Convert page_move_anon_rmap() to folio_move_anon_rmap(), letting the callers handle PageAnonExclusive. I'm including cleanup patch #3 because it fits into the picture and can be done cleaner by the conversion. This patch (of 3): Let's move it into the caller: there is a difference between whether an anon folio can only be mapped by one process (e.g., into one VMA), and whether it is truly exclusive (e.g., no references -- including GUP -- from other processes). Further, for large folios the page might not actually be pointing at the head page of the folio, so it better be handled in the caller. This is a preparation for converting page_move_anon_rmap() to consume a folio. Link: https://lkml.kernel.org/r/[email protected] Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: David Hildenbrand <[email protected]> Reviewed-by: Suren Baghdasaryan <[email protected]> Reviewed-by: Vishal Moola (Oracle) <[email protected]> Cc: Mike Kravetz <[email protected]> Cc: Muchun Song <[email protected]> Cc: Matthew Wilcox <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 24, 2023
A thread started via eg. user_mode_thread() runs in the kernel to begin with and then may later return to userspace. While it's running in the kernel it has a pt_regs at the base of its kernel stack, but that pt_regs is all zeroes. If the thread oopses in that state, it leads to an ugly stack trace with a big block of zero GPRs, as reported by Joel: Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(0,0) CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.5.0-rc7-00004-gf7757129e3de-dirty #3 Hardware name: IBM PowerNV (emulated by qemu) POWER9 0x4e1200 opal:v7.0 PowerNV Call Trace: [c0000000036afb00] [c0000000010dd058] dump_stack_lvl+0x6c/0x9c (unreliable) [c0000000036afb30] [c00000000013c524] panic+0x178/0x424 [c0000000036afbd0] [c000000002005100] mount_root_generic+0x250/0x324 [c0000000036afca0] [c0000000020057d0] prepare_namespace+0x2d4/0x344 [c0000000036afd20] [c0000000020049c0] kernel_init_freeable+0x358/0x3ac [c0000000036afdf0] [c0000000000111b0] kernel_init+0x30/0x1a0 [c0000000036afe50] [c00000000000debc] ret_from_kernel_user_thread+0x14/0x1c --- interrupt: 0 at 0x0 NIP: 0000000000000000 LR: 0000000000000000 CTR: 0000000000000000 REGS: c0000000036afe80 TRAP: 0000 Not tainted (6.5.0-rc7-00004-gf7757129e3de-dirty) MSR: 0000000000000000 <> CR: 00000000 XER: 00000000 CFAR: 0000000000000000 IRQMASK: 0 GPR00: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR04: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR08: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR12: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR20: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR24: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR28: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 NIP [0000000000000000] 0x0 LR [0000000000000000] 0x0 --- interrupt: 0 The all-zero pt_regs looks ugly and conveys no useful information, other than its presence. So detect that case and just show the presence of the frame by printing the interrupt marker, eg: Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(0,0) CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.5.0-rc3-00126-g18e9506562a0-dirty torvalds#301 Hardware name: IBM pSeries (emulated by qemu) POWER9 (raw) 0x4e1202 0xf000005 of:SLOF,HEAD hv:linux,kvm pSeries Call Trace: [c000000003aabb00] [c000000001143db8] dump_stack_lvl+0x6c/0x9c (unreliable) [c000000003aabb30] [c00000000014c624] panic+0x178/0x424 [c000000003aabbd0] [c0000000020050fc] mount_root_generic+0x250/0x324 [c000000003aabca0] [c0000000020057cc] prepare_namespace+0x2d4/0x344 [c000000003aabd20] [c0000000020049bc] kernel_init_freeable+0x358/0x3ac [c000000003aabdf0] [c0000000000111b0] kernel_init+0x30/0x1a0 [c000000003aabe50] [c00000000000debc] ret_from_kernel_user_thread+0x14/0x1c --- interrupt: 0 at 0x0 To avoid ever suppressing a valid pt_regs make sure the pt_regs has a zero MSR and TRAP value, and is located at the very base of the stack. Fixes: 6895dfc ("powerpc: copy_thread fill in interrupt frame marker and back chain") Reported-by: Joel Stanley <[email protected]> Reported-by: Nicholas Piggin <[email protected]> Reviewed-by: Joel Stanley <[email protected]> Signed-off-by: Michael Ellerman <[email protected]> Link: https://msgid.link/[email protected]
akiyks
pushed a commit
that referenced
this pull request
Oct 24, 2023
Running smb2.rename test from Samba smbtorture suite against a kernel built
with lockdep triggers a "possible recursive locking detected" warning.
This is because mnt_want_write() is called twice with no mnt_drop_write()
in between:
-> ksmbd_vfs_mkdir()
-> ksmbd_vfs_kern_path_create()
-> kern_path_create()
-> filename_create()
-> mnt_want_write()
-> mnt_want_write()
Fix this by removing the mnt_want_write/mnt_drop_write calls from vfs
helpers that call kern_path_create().
Full lockdep trace below:
============================================
WARNING: possible recursive locking detected
6.6.0-rc5 torvalds#775 Not tainted
--------------------------------------------
kworker/1:1/32 is trying to acquire lock:
ffff888005ac83f8 (sb_writers#5){.+.+}-{0:0}, at: ksmbd_vfs_mkdir+0xe1/0x410
but task is already holding lock:
ffff888005ac83f8 (sb_writers#5){.+.+}-{0:0}, at: filename_create+0xb6/0x260
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(sb_writers#5);
lock(sb_writers#5);
*** DEADLOCK ***
May be due to missing lock nesting notation
4 locks held by kworker/1:1/32:
#0: ffff8880064e4138 ((wq_completion)ksmbd-io){+.+.}-{0:0}, at: process_one_work+0x40e/0x980
#1: ffff888005b0fdd0 ((work_completion)(&work->work)){+.+.}-{0:0}, at: process_one_work+0x40e/0x980
#2: ffff888005ac83f8 (sb_writers#5){.+.+}-{0:0}, at: filename_create+0xb6/0x260
#3: ffff8880057ce760 (&type->i_mutex_dir_key#3/1){+.+.}-{3:3}, at: filename_create+0x123/0x260
Cc: [email protected]
Fixes: 40b268d ("ksmbd: add mnt_want_write to ksmbd vfs functions")
Signed-off-by: Marios Makassikis <[email protected]>
Acked-by: Namjae Jeon <[email protected]>
Signed-off-by: Steve French <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 25, 2023
Eduard Zingerman says: ==================== exact states comparison for iterator convergence checks Iterator convergence logic in is_state_visited() uses state_equals() for states with branches counter > 0 to check if iterator based loop converges. This is not fully correct because state_equals() relies on presence of read and precision marks on registers. These marks are not guaranteed to be finalized while state has branches. Commit message for patch #3 describes a program that exhibits such behavior. This patch-set aims to fix iterator convergence logic by adding notion of exact states comparison. Exact comparison does not rely on presence of read or precision marks and thus is more strict. As explained in commit message for patch #3 exact comparisons require addition of speculative register bounds widening. The end result for BPF verifier users could be summarized as follows: (!) After this update verifier would reject programs that conjure an imprecise value on the first loop iteration and use it as precise on the second (for iterator based loops). I urge people to at least skim over the commit message for patch #3. Patches are organized as follows: - patches #1,2: moving/extracting utility functions; - patch #3: introduces exact mode for states comparison and adds widening heuristic; - patch #4: adds test-cases that demonstrate why the series is necessary; - patch #5: extends patch #3 with a notion of state loop entries, these entries have to be tracked to correctly identify that different verifier states belong to the same states loop; - patch torvalds#6: adds a test-case that demonstrates a program which requires loop entry tracking for correct verification; - patch torvalds#7: just adds a few debug prints. The following actions are planned as a followup for this patch-set: - implementation has to be adapted for callbacks handling logic as a part of a fix for [1]; - it is necessary to explore ways to improve widening heuristic to handle iters_task_vma test w/o need to insert barrier_var() calls; - explored states eviction logic on cache miss has to be extended to either: - allow eviction of checkpoint states -or- - be sped up in case if there are many active checkpoints associated with the same instruction. The patch-set is a followup for mailing list discussion [1]. Changelog: - V2 [3] -> V3: - correct check for stack spills in widen_imprecise_scalars(), added test case progs/iters.c:widen_spill to check the behavior (suggested by Andrii); - allow eviction of checkpoint states in is_state_visited() to avoid pathological verifier performance when iterator based loop does not converge (discussion with Alexei). - V1 [2] -> V2, applied changes suggested by Alexei offlist: - __explored_state() function removed; - same_callsites() function is now used in clean_live_states(); - patches #1,2 are added as preparatory code movement; - in process_iter_next_call() a safeguard is added to verify that cur_st->parent exists and has expected insn index / call sites. [1] https://lore.kernel.org/bpf/[email protected]/ [2] https://lore.kernel.org/bpf/[email protected]/ [3] https://lore.kernel.org/bpf/[email protected]/ ==================== Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Alexei Starovoitov <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Nov 1, 2023
Chuyi Zhou says: ==================== Add Open-coded task, css_task and css iters This is version 6 of task, css_task and css iters support. --- Changelog --- v5 -> v6: Patch #3: * In bpf_iter_task_next, return pos rather than goto out. (Andrii) Patch #2, #3, #4: * Add the missing __diag_ignore_all to avoid kernel build warning Patch #5, torvalds#6, torvalds#7: * Add Andrii's ack Patch torvalds#8: * In BPF prog iter_css_task_for_each, return -EPERM rather than 0, and ensure stack_mprotect() in iters.c not success. If not, it would cause the subsequent 'test_lsm' fail, since the 'is_stack' check in test_int_hook(lsm.c) would not be guaranteed. (https://github.com/kernel-patches/bpf/actions/runs/6489662214/job/17624665086?pr=5790) v4 -> v5:https://lore.kernel.org/lkml/[email protected]/ Patch 3~4: * Relax the BUILD_BUG_ON check in bpf_iter_task_new and bpf_iter_css_new to avoid netdev/build_32bit CI error. (https://netdev.bots.linux.dev/static/nipa/790929/13412333/build_32bit/stderr) Patch 8: * Initialize skel pointer to fix the LLVM-16 build CI error (https://github.com/kernel-patches/bpf/actions/runs/6462875618/job/17545170863) v3 -> v4:https://lore.kernel.org/all/[email protected]/ * Address all the comments from Andrii in patch-3 ~ patch-6 * Collect Tejun's ack * Add a extra patch to rename bpf_iter_task.c to bpf_iter_tasks.c * Seperate three BPF program files for selftests (iters_task.c iters_css_task.c iters_css.c) v2 -> v3:https://lore.kernel.org/lkml/[email protected]/ Patch 1 (cgroup: Prepare for using css_task_iter_*() in BPF) * Add tj's ack and Alexei's suggest-by. Patch 2 (bpf: Introduce css_task open-coded iterator kfuncs) * Use bpf_mem_alloc/bpf_mem_free rather than kzalloc() * Add KF_TRUSTED_ARGS for bpf_iter_css_task_new (Alexei) * Move bpf_iter_css_task's definition from uapi/linux/bpf.h to kernel/bpf/task_iter.c and we can use it from vmlinux.h * Move bpf_iter_css_task_XXX's declaration from bpf_helpers.h to bpf_experimental.h Patch 3 (Introduce task open coded iterator kfuncs) * Change th API design keep consistent with SEC("iter/task"), support iterating all threads(BPF_TASK_ITERATE_ALL) and threads of a specific task (BPF_TASK_ITERATE_THREAD).(Andrii) * Move bpf_iter_task's definition from uapi/linux/bpf.h to kernel/bpf/task_iter.c and we can use it from vmlinux.h * Move bpf_iter_task_XXX's declaration from bpf_helpers.h to bpf_experimental.h Patch 4 (Introduce css open-coded iterator kfuncs) * Change th API design keep consistent with cgroup_iters, reuse BPF_CGROUP_ITER_DESCENDANTS_PRE/BPF_CGROUP_ITER_DESCENDANTS_POST /BPF_CGROUP_ITER_ANCESTORS_UP(Andrii) * Add KF_TRUSTED_ARGS for bpf_iter_css_new * Move bpf_iter_css's definition from uapi/linux/bpf.h to kernel/bpf/task_iter.c and we can use it from vmlinux.h * Move bpf_iter_css_XXX's declaration from bpf_helpers.h to bpf_experimental.h Patch 5 (teach the verifier to enforce css_iter and task_iter in RCU CS) * Add KF flag KF_RCU_PROTECTED to maintain kfuncs which need RCU CS.(Andrii) * Consider STACK_ITER when using bpf_for_each_spilled_reg. Patch 6 (Let bpf_iter_task_new accept null task ptr) * Add this extra patch to let bpf_iter_task_new accept a 'nullable' * task pointer(Andrii) Patch 7 (selftests/bpf: Add tests for open-coded task and css iter) * Add failure testcase(Alexei) Changes from v1(https://lore.kernel.org/lkml/[email protected]/): - Add a pre-patch to make some preparations before supporting css_task iters.(Alexei) - Add an allowlist for css_task iters(Alexei) - Let bpf progs do explicit bpf_rcu_read_lock() when using process iters and css_descendant iters.(Alexei) --------------------- In some BPF usage scenarios, it will be useful to iterate the process and css directly in the BPF program. One of the expected scenarios is customizable OOM victim selection via BPF[1]. Inspired by Dave's task_vma iter[2], this patchset adds three types of open-coded iterator kfuncs: 1. bpf_task_iters. It can be used to 1) iterate all process in the system, like for_each_forcess() in kernel. 2) iterate all threads in the system. 3) iterate all threads of a specific task 2. bpf_css_iters. It works like css_task_iter_{start, next, end} and would be used to iterating tasks/threads under a css. 3. css_iters. It works like css_next_descendant_{pre, post} to iterating all descendant css. BPF programs can use these kfuncs directly or through bpf_for_each macro. link[1]: https://lore.kernel.org/lkml/[email protected]/ link[2]: https://lore.kernel.org/all/[email protected]/ ==================== Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Alexei Starovoitov <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 3, 2025
…ux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 changes for 6.17, round #3 - Invalidate nested MMUs upon freeing the PGD to avoid WARNs when visiting from an MMU notifier - Fixes to the TLB match process and TLB invalidation range for managing the VCNR pseudo-TLB - Prevent SPE from erroneously profiling guests due to UNKNOWN reset values in PMSCR_EL1 - Fix save/restore of host MDCR_EL2 to account for eagerly programming at vcpu_load() on VHE systems - Correct lock ordering when dealing with VGIC LPIs, avoiding scenarios where an xarray's spinlock was nested with a *raw* spinlock - Permit stage-2 read permission aborts which are possible in the case of NV depending on the guest hypervisor's stage-2 translation - Call raw_spin_unlock() instead of the internal spinlock API - Fix parameter ordering when assigning VBAR_EL1 [Pull into kvm/master to fix conflicts. - Paolo]
akiyks
pushed a commit
that referenced
this pull request
Oct 4, 2025
The ns_bpf_qdisc selftest triggers a kernel panic: Oops[#1]: CPU 0 Unable to handle kernel paging request at virtual address 0000000000741d58, era == 90000000851b5ac0, ra == 90000000851b5aa4 CPU: 0 UID: 0 PID: 449 Comm: test_progs Tainted: G OE 6.16.0+ #3 PREEMPT(full) Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: QEMU QEMU Virtual Machine, BIOS unknown 2/2/2022 pc 90000000851b5ac0 ra 90000000851b5aa4 tp 90000001076b8000 sp 90000001076bb600 a0 0000000000741ce8 a1 0000000000000001 a2 90000001076bb5c0 a3 0000000000000008 a4 90000001004c4620 a5 9000000100741ce8 a6 0000000000000000 a7 0100000000000000 t0 0000000000000010 t1 0000000000000000 t2 9000000104d24d30 t3 0000000000000001 t4 4f2317da8a7e08c4 t5 fffffefffc002f00 t6 90000001004c4620 t7 ffffffffc61c5b3d t8 0000000000000000 u0 0000000000000001 s9 0000000000000050 s0 90000001075bc800 s1 0000000000000040 s2 900000010597c400 s3 0000000000000008 s4 90000001075bc880 s5 90000001075bc8f0 s6 0000000000000000 s7 0000000000741ce8 s8 0000000000000000 ra: 90000000851b5aa4 __qdisc_run+0xac/0x8d8 ERA: 90000000851b5ac0 __qdisc_run+0xc8/0x8d8 CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE) PRMD: 00000004 (PPLV0 +PIE -PWE) EUEN: 00000007 (+FPE +SXE +ASXE -BTE) ECFG: 00071c1d (LIE=0,2-4,10-12 VS=7) ESTAT: 00010000 [PIL] (IS= ECode=1 EsubCode=0) BADV: 0000000000741d58 PRID: 0014c010 (Loongson-64bit, Loongson-3A5000) Modules linked in: bpf_testmod(OE) [last unloaded: bpf_testmod(OE)] Process test_progs (pid: 449, threadinfo=000000009af02b3a, task=00000000e9ba4956) Stack : 0000000000000000 90000001075bc8ac 90000000869524a8 9000000100741ce8 90000001075bc800 9000000100415300 90000001075bc8ac 0000000000000000 900000010597c400 900000008694a000 0000000000000000 9000000105b59000 90000001075bc800 9000000100741ce8 0000000000000050 900000008513000c 9000000086936000 0000000100094d4c fffffff400676208 0000000000000000 9000000105b59000 900000008694a000 9000000086bf0dc0 9000000105b59000 9000000086bf0d68 9000000085147010 90000001075be788 0000000000000000 9000000086bf0f98 0000000000000001 0000000000000010 9000000006015840 0000000000000000 9000000086be6c40 0000000000000000 0000000000000000 0000000000000000 4f2317da8a7e08c4 0000000000000101 4f2317da8a7e08c4 ... Call Trace: [<90000000851b5ac0>] __qdisc_run+0xc8/0x8d8 [<9000000085130008>] __dev_queue_xmit+0x578/0x10f0 [<90000000853701c0>] ip6_finish_output2+0x2f0/0x950 [<9000000085374bc8>] ip6_finish_output+0x2b8/0x448 [<9000000085370b24>] ip6_xmit+0x304/0x858 [<90000000853c4438>] inet6_csk_xmit+0x100/0x170 [<90000000852b32f0>] __tcp_transmit_skb+0x490/0xdd0 [<90000000852b47fc>] tcp_connect+0xbcc/0x1168 [<90000000853b9088>] tcp_v6_connect+0x580/0x8a0 [<90000000852e7738>] __inet_stream_connect+0x170/0x480 [<90000000852e7a98>] inet_stream_connect+0x50/0x88 [<90000000850f2814>] __sys_connect+0xe4/0x110 [<90000000850f2858>] sys_connect+0x18/0x28 [<9000000085520c94>] do_syscall+0x94/0x1a0 [<9000000083df1fb8>] handle_syscall+0xb8/0x158 Code: 4001ad80 2400873 2400832d <240073cc> 001137ff 001133ff 6407b41f 001503cc 0280041d ---[ end trace 0000000000000000 ]--- The bpf_fifo_dequeue prog returns a skb which is a pointer. The pointer is treated as a 32bit value and sign extend to 64bit in epilogue. This behavior is right for most bpf prog types but wrong for struct ops which requires LoongArch ABI. So let's sign extend struct ops return values according to the LoongArch ABI ([1]) and return value spec in function model. [1]: https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html Cc: [email protected] Fixes: 6abf17d ("LoongArch: BPF: Add struct ops support for trampoline") Signed-off-by: Hengqi Chen <[email protected]> Signed-off-by: Huacai Chen <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 4, 2025
generic/091 may fail, then it bisects to the bad commit ba8dac3 ("f2fs: fix to zero post-eof page"). What will cause generic/091 to fail is something like below Testcase #1: 1. write 16k as compressed blocks 2. truncate to 12k 3. truncate to 20k 4. verify data in range of [12k, 16k], however data is not zero as expected Script of Testcase #1 mkfs.f2fs -f -O extra_attr,compression /dev/vdb mount -t f2fs -o compress_extension=* /dev/vdb /mnt/f2fs dd if=/dev/zero of=/mnt/f2fs/file bs=12k count=1 dd if=/dev/random of=/mnt/f2fs/file bs=4k count=1 seek=3 conv=notrunc sync truncate -s $((12*1024)) /mnt/f2fs/file truncate -s $((20*1024)) /mnt/f2fs/file dd if=/mnt/f2fs/file of=/mnt/f2fs/data bs=4k count=1 skip=3 od /mnt/f2fs/data umount /mnt/f2fs Analisys: in step 2), we will redirty all data pages from #0 to #3 in compressed cluster, and zero page #3, in step 3), f2fs_setattr() will call f2fs_zero_post_eof_page() to drop all page cache post eof, includeing dirtied page #3, in step 4) when we read data from page #3, it will decompressed cluster and extra random data to page #3, finally, we hit the non-zeroed data post eof. However, the commit ba8dac3 ("f2fs: fix to zero post-eof page") just let the issue be reproduced easily, w/o the commit, it can reproduce this bug w/ below Testcase #2: 1. write 16k as compressed blocks 2. truncate to 8k 3. truncate to 12k 4. truncate to 20k 5. verify data in range of [12k, 16k], however data is not zero as expected Script of Testcase #2 mkfs.f2fs -f -O extra_attr,compression /dev/vdb mount -t f2fs -o compress_extension=* /dev/vdb /mnt/f2fs dd if=/dev/zero of=/mnt/f2fs/file bs=12k count=1 dd if=/dev/random of=/mnt/f2fs/file bs=4k count=1 seek=3 conv=notrunc sync truncate -s $((8*1024)) /mnt/f2fs/file truncate -s $((12*1024)) /mnt/f2fs/file truncate -s $((20*1024)) /mnt/f2fs/file echo 3 > /proc/sys/vm/drop_caches dd if=/mnt/f2fs/file of=/mnt/f2fs/data bs=4k count=1 skip=3 od /mnt/f2fs/data umount /mnt/f2fs Anlysis: in step 2), we will redirty all data pages from #0 to #3 in compressed cluster, and zero page #2 and #3, in step 3), we will truncate page #3 in page cache, in step 4), expand file size, in step 5), hit random data post eof w/ the same reason in Testcase #1. Root Cause: In f2fs_truncate_partial_cluster(), after we truncate partial data block on compressed cluster, all pages in cluster including the one post eof will be dirtied, after another tuncation, dirty page post eof will be dropped, however on-disk compressed cluster is still valid, it may include non-zero data post eof, result in exposing previous non-zero data post eof while reading. Fix: In f2fs_truncate_partial_cluster(), let change as below to fix: - call filemap_write_and_wait_range() to flush dirty page - call truncate_pagecache() to drop pages or zero partial page post eof - call f2fs_do_truncate_blocks() to truncate non-compress cluster to last valid block Fixes: 3265d3d ("f2fs: support partial truncation on compressed inode") Reported-by: Jan Prusakowski <[email protected]> Signed-off-by: Chao Yu <[email protected]> Signed-off-by: Jaegeuk Kim <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 9, 2025
Expand the prefault memory selftest to add a regression test for a KVM bug where KVM's retry logic would result in (breakable) deadlock due to the memslot deletion waiting on prefaulting to release SRCU, and prefaulting waiting on the memslot to fully disappear (KVM uses a two-step process to delete memslots, and KVM x86 retries page faults if a to-be-deleted, a.k.a. INVALID, memslot is encountered). To exercise concurrent memslot remove, spawn a second thread to initiate memslot removal at roughly the same time as prefaulting. Test memslot removal for all testcases, i.e. don't limit concurrent removal to only the success case. There are essentially three prefault scenarios (so far) that are of interest: 1. Success 2. ENOENT due to no memslot 3. EAGAIN due to INVALID memslot For all intents and purposes, #1 and #2 are mutually exclusive, or rather, easier to test via separate testcases since writing to non-existent memory is trivial. But for #3, making it mutually exclusive with #1 _or_ #2 is actually more complex than testing memslot removal for all scenarios. The only requirement to let memslot removal coexist with other scenarios is a way to guarantee a stable result, e.g. that the "no memslot" test observes ENOENT, not EAGAIN, for the final checks. So, rather than make memslot removal mutually exclusive with the ENOENT scenario, simply restore the memslot and retry prefaulting. For the "no memslot" case, KVM_PRE_FAULT_MEMORY should be idempotent, i.e. should always fail with ENOENT regardless of how many times userspace attempts prefaulting. Pass in both the base GPA and the offset (instead of the "full" GPA) so that the worker can recreate the memslot. Signed-off-by: Yan Zhao <[email protected]> Co-developed-by: Sean Christopherson <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Sean Christopherson <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 17, 2025
Since blamed commit, unregister_netdevice_many_notify() takes the netdev
mutex if the device needs it.
If the device list is too long, this will lock more device mutexes than
lockdep can handle:
unshare -n \
bash -c 'for i in $(seq 1 100);do ip link add foo$i type dummy;done'
BUG: MAX_LOCK_DEPTH too low!
turning off the locking correctness validator.
depth: 48 max: 48!
48 locks held by kworker/u16:1/69:
#0: ..148 ((wq_completion)netns){+.+.}-{0:0}, at: process_one_work
#1: ..d40 (net_cleanup_work){+.+.}-{0:0}, at: process_one_work
#2: ..bd0 (pernet_ops_rwsem){++++}-{4:4}, at: cleanup_net
#3: ..aa8 (rtnl_mutex){+.+.}-{4:4}, at: default_device_exit_batch
#4: ..cb0 (&dev_instance_lock_key#3){+.+.}-{4:4}, at: unregister_netdevice_many_notify
[..]
Add a helper to close and then unlock a list of net_devices.
Devices that are not up have to be skipped - netif_close_many always
removes them from the list without any other actions taken, so they'd
remain in locked state.
Close devices whenever we've used up half of the tracking slots or we
processed entire list without hitting the limit.
Fixes: 7e4d784 ("net: hold netdev instance lock during rtnetlink operations")
Signed-off-by: Florian Westphal <[email protected]>
Link: https://patch.msgid.link/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 18, 2025
The original code causes a circular locking dependency found by lockdep. ====================================================== WARNING: possible circular locking dependency detected 6.16.0-rc6-lgci-xe-xe-pw-151626v3+ #1 Tainted: G S U ------------------------------------------------------ xe_fault_inject/5091 is trying to acquire lock: ffff888156815688 ((work_completion)(&(&devcd->del_wk)->work)){+.+.}-{0:0}, at: __flush_work+0x25d/0x660 but task is already holding lock: ffff888156815620 (&devcd->mutex){+.+.}-{3:3}, at: dev_coredump_put+0x3f/0xa0 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (&devcd->mutex){+.+.}-{3:3}: mutex_lock_nested+0x4e/0xc0 devcd_data_write+0x27/0x90 sysfs_kf_bin_write+0x80/0xf0 kernfs_fop_write_iter+0x169/0x220 vfs_write+0x293/0x560 ksys_write+0x72/0xf0 __x64_sys_write+0x19/0x30 x64_sys_call+0x2bf/0x2660 do_syscall_64+0x93/0xb60 entry_SYSCALL_64_after_hwframe+0x76/0x7e -> #1 (kn->active#236){++++}-{0:0}: kernfs_drain+0x1e2/0x200 __kernfs_remove+0xae/0x400 kernfs_remove_by_name_ns+0x5d/0xc0 remove_files+0x54/0x70 sysfs_remove_group+0x3d/0xa0 sysfs_remove_groups+0x2e/0x60 device_remove_attrs+0xc7/0x100 device_del+0x15d/0x3b0 devcd_del+0x19/0x30 process_one_work+0x22b/0x6f0 worker_thread+0x1e8/0x3d0 kthread+0x11c/0x250 ret_from_fork+0x26c/0x2e0 ret_from_fork_asm+0x1a/0x30 -> #0 ((work_completion)(&(&devcd->del_wk)->work)){+.+.}-{0:0}: __lock_acquire+0x1661/0x2860 lock_acquire+0xc4/0x2f0 __flush_work+0x27a/0x660 flush_delayed_work+0x5d/0xa0 dev_coredump_put+0x63/0xa0 xe_driver_devcoredump_fini+0x12/0x20 [xe] devm_action_release+0x12/0x30 release_nodes+0x3a/0x120 devres_release_all+0x8a/0xd0 device_unbind_cleanup+0x12/0x80 device_release_driver_internal+0x23a/0x280 device_driver_detach+0x14/0x20 unbind_store+0xaf/0xc0 drv_attr_store+0x21/0x50 sysfs_kf_write+0x4a/0x80 kernfs_fop_write_iter+0x169/0x220 vfs_write+0x293/0x560 ksys_write+0x72/0xf0 __x64_sys_write+0x19/0x30 x64_sys_call+0x2bf/0x2660 do_syscall_64+0x93/0xb60 entry_SYSCALL_64_after_hwframe+0x76/0x7e other info that might help us debug this: Chain exists of: (work_completion)(&(&devcd->del_wk)->work) --> kn->active#236 --> &devcd->mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&devcd->mutex); lock(kn->active#236); lock(&devcd->mutex); lock((work_completion)(&(&devcd->del_wk)->work)); *** DEADLOCK *** 5 locks held by xe_fault_inject/5091: #0: ffff8881129f9488 (sb_writers#5){.+.+}-{0:0}, at: ksys_write+0x72/0xf0 #1: ffff88810c755078 (&of->mutex#2){+.+.}-{3:3}, at: kernfs_fop_write_iter+0x123/0x220 #2: ffff8881054811a0 (&dev->mutex){....}-{3:3}, at: device_release_driver_internal+0x55/0x280 #3: ffff888156815620 (&devcd->mutex){+.+.}-{3:3}, at: dev_coredump_put+0x3f/0xa0 #4: ffffffff8359e020 (rcu_read_lock){....}-{1:2}, at: __flush_work+0x72/0x660 stack backtrace: CPU: 14 UID: 0 PID: 5091 Comm: xe_fault_inject Tainted: G S U 6.16.0-rc6-lgci-xe-xe-pw-151626v3+ #1 PREEMPT_{RT,(lazy)} Tainted: [S]=CPU_OUT_OF_SPEC, [U]=USER Hardware name: Micro-Star International Co., Ltd. MS-7D25/PRO Z690-A DDR4(MS-7D25), BIOS 1.10 12/13/2021 Call Trace: <TASK> dump_stack_lvl+0x91/0xf0 dump_stack+0x10/0x20 print_circular_bug+0x285/0x360 check_noncircular+0x135/0x150 ? register_lock_class+0x48/0x4a0 __lock_acquire+0x1661/0x2860 lock_acquire+0xc4/0x2f0 ? __flush_work+0x25d/0x660 ? mark_held_locks+0x46/0x90 ? __flush_work+0x25d/0x660 __flush_work+0x27a/0x660 ? __flush_work+0x25d/0x660 ? trace_hardirqs_on+0x1e/0xd0 ? __pfx_wq_barrier_func+0x10/0x10 flush_delayed_work+0x5d/0xa0 dev_coredump_put+0x63/0xa0 xe_driver_devcoredump_fini+0x12/0x20 [xe] devm_action_release+0x12/0x30 release_nodes+0x3a/0x120 devres_release_all+0x8a/0xd0 device_unbind_cleanup+0x12/0x80 device_release_driver_internal+0x23a/0x280 ? bus_find_device+0xa8/0xe0 device_driver_detach+0x14/0x20 unbind_store+0xaf/0xc0 drv_attr_store+0x21/0x50 sysfs_kf_write+0x4a/0x80 kernfs_fop_write_iter+0x169/0x220 vfs_write+0x293/0x560 ksys_write+0x72/0xf0 __x64_sys_write+0x19/0x30 x64_sys_call+0x2bf/0x2660 do_syscall_64+0x93/0xb60 ? __f_unlock_pos+0x15/0x20 ? __x64_sys_getdents64+0x9b/0x130 ? __pfx_filldir64+0x10/0x10 ? do_syscall_64+0x1a2/0xb60 ? clear_bhb_loop+0x30/0x80 ? clear_bhb_loop+0x30/0x80 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x76e292edd574 Code: c7 00 16 00 00 00 b8 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 80 3d d5 ea 0e 00 00 74 13 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 c3 0f 1f 00 55 48 89 e5 48 83 ec 20 48 89 RSP: 002b:00007fffe247a828 EFLAGS: 00000202 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 000076e292edd574 RDX: 000000000000000c RSI: 00006267f6306063 RDI: 000000000000000b RBP: 000000000000000c R08: 000076e292fc4b20 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000202 R12: 00006267f6306063 R13: 000000000000000b R14: 00006267e6859c00 R15: 000076e29322a000 </TASK> xe 0000:03:00.0: [drm] Xe device coredump has been deleted. Fixes: 01daccf ("devcoredump : Serialize devcd_del work") Cc: Mukesh Ojha <[email protected]> Cc: Greg Kroah-Hartman <[email protected]> Cc: Johannes Berg <[email protected]> Cc: Rafael J. Wysocki <[email protected]> Cc: Danilo Krummrich <[email protected]> Cc: [email protected] Cc: [email protected] # v6.1+ Signed-off-by: Maarten Lankhorst <[email protected]> Cc: Matthew Brost <[email protected]> Acked-by: Mukesh Ojha <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Greg Kroah-Hartman <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Oct 23, 2025
… 'T'
When perf report with annotation for a symbol, press 's' and 'T', then exit
the annotate browser. Once annotate the same symbol, the annotate browser
will crash.
The browser.arch was required to be correctly updated when data type
feature was enabled by 'T'. Usually it was initialized by symbol__annotate2
function. If a symbol has already been correctly annotated at the first
time, it should not call the symbol__annotate2 function again, thus the
browser.arch will not get initialized. Then at the second time to show the
annotate browser, the data type needs to be displayed but the browser.arch
is empty.
Stack trace as below:
Perf: Segmentation fault
-------- backtrace --------
#0 0x55d365 in ui__signal_backtrace setup.c:0
#1 0x7f5ff1a3e930 in __restore_rt libc.so.6[3e930]
#2 0x570f08 in arch__is perf[570f08]
#3 0x562186 in annotate_get_insn_location perf[562186]
#4 0x562626 in __hist_entry__get_data_type annotate.c:0
#5 0x56476d in annotation_line__write perf[56476d]
torvalds#6 0x54e2db in annotate_browser__write annotate.c:0
torvalds#7 0x54d061 in ui_browser__list_head_refresh perf[54d061]
torvalds#8 0x54dc9e in annotate_browser__refresh annotate.c:0
torvalds#9 0x54c03d in __ui_browser__refresh browser.c:0
torvalds#10 0x54ccf8 in ui_browser__run perf[54ccf8]
torvalds#11 0x54eb92 in __hist_entry__tui_annotate perf[54eb92]
torvalds#12 0x552293 in do_annotate hists.c:0
torvalds#13 0x55941c in evsel__hists_browse hists.c:0
torvalds#14 0x55b00f in evlist__tui_browse_hists perf[55b00f]
torvalds#15 0x42ff02 in cmd_report perf[42ff02]
torvalds#16 0x494008 in run_builtin perf.c:0
torvalds#17 0x494305 in handle_internal_command perf.c:0
torvalds#18 0x410547 in main perf[410547]
torvalds#19 0x7f5ff1a295d0 in __libc_start_call_main libc.so.6[295d0]
torvalds#20 0x7f5ff1a29680 in __libc_start_main@@GLIBC_2.34 libc.so.6[29680]
torvalds#21 0x410b75 in _start perf[410b75]
Fixes: 1d4374a ("perf annotate: Add 'T' hot key to toggle data type display")
Reviewed-by: James Clark <[email protected]>
Tested-by: Namhyung Kim <[email protected]>
Signed-off-by: Tianyou Li <[email protected]>
Signed-off-by: Namhyung Kim <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Nov 2, 2025
The U-Blox EVK-M101 enumerates as 1546:0506 [1] with four FTDI interfaces: - EVK-M101 current sensors - EVK-M101 I2C - EVK-M101 UART - EVK-M101 port D Only the third USB interface is a UART. This change lets ftdi_sio probe the VID/PID and registers only interface #3 as a TTY, leaving the rest available for other drivers. [1] usb 5-1.3: new high-speed USB device number 11 using xhci_hcd usb 5-1.3: New USB device found, idVendor=1546, idProduct=0506, bcdDevice= 8.00 usb 5-1.3: New USB device strings: Mfr=1, Product=2, SerialNumber=0 usb 5-1.3: Product: EVK-M101 usb 5-1.3: Manufacturer: u-blox AG Datasheet: https://content.u-blox.com/sites/default/files/documents/EVK-M10_UserGuide_UBX-21003949.pdf Signed-off-by: Oleksandr Suvorov <[email protected]> Link: https://lore.kernel.org/[email protected]/ Cc: [email protected] Signed-off-by: Johan Hovold <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Nov 2, 2025
Ido Schimmel says:
====================
icmp: Add RFC 5837 support
tl;dr
=====
This patchset extends certain ICMP error messages (e.g., "Time
Exceeded") with incoming interface information in accordance with RFC
5837 [1]. This is required for more meaningful traceroute results in
unnumbered networks. Like other ICMP settings, the feature is controlled
via a per-{netns, address family} sysctl. The interface and the
implementation are designed to support more ICMP extensions.
Motivation
==========
Over the years, the kernel was extended with the ability to derive the
source IP of ICMP error messages from the interface that received the
datagram which elicited the ICMP error [2][3][4]. This is especially
important for "Time Exceeded" messages as it allows traceroute users to
trace the actual packet path along the network.
The above scheme does not work in unnumbered networks. In these
networks, only the loopback / VRF interface is assigned a global IP
address while router interfaces are assigned IPv6 link-local addresses.
As such, ICMP error messages are generated with a source IP derived from
the loopback / VRF interface, making it impossible to trace the actual
packet path when parallel links exist between routers.
The problem can be solved by implementing the solution proposed by RFC
4884 [5] and RFC 5837. The former defines an ICMP extension structure
that can be appended to selected ICMP messages and carry extension
objects. The latter defines an extension object called the "Interface
Information Object" (IIO) that can carry interface information (e.g.,
name, index, MTU) about interfaces with certain roles such as the
interface that received the datagram which elicited the ICMP error.
The payload of the datagram that elicited the error (potentially padded
/ trimmed) along with the ICMP extension structure will be queued to the
error queue of the originating socket, thereby allowing traceroute
applications to parse and display the information encoded in the ICMP
extension structure. Example:
# traceroute6 -e 2001:db8:1::3
traceroute to 2001:db8:1::3 (2001:db8:1::3), 30 hops max, 80 byte packets
1 2001:db8:1::2 (2001:db8:1::2) <INC:11,"eth1",mtu=1500> 0.214 ms 0.171 ms 0.162 ms
2 2001:db8:1::3 (2001:db8:1::3) <INC:12,"eth2",mtu=1500> 0.154 ms 0.135 ms 0.127 ms
# traceroute -e 192.0.2.3
traceroute to 192.0.2.3 (192.0.2.3), 30 hops max, 60 byte packets
1 192.0.2.2 (192.0.2.2) <INC:11,"eth1",mtu=1500> 0.191 ms 0.148 ms 0.144 ms
2 192.0.2.3 (192.0.2.3) <INC:12,"eth2",mtu=1500> 0.137 ms 0.122 ms 0.114 ms
Implementation
==============
As previously stated, the feature is controlled via a per-{netns,
address} sysctl. Specifically, a bit mask where each bit controls the
addition of a different ICMP extension to ICMP error messages.
Currently, only a single value is supported, to append the incoming
interface information.
Key points:
1. Global knob vs finer control. I am not aware of users who require
finer control, but it is possible that some users will want to avoid
appending ICMP extensions when the packet is sent out of a specific
interface (e.g., the management interface) or to a specific subnet. This
can be accomplished via a tc-bpf program that trims the ICMP extension
structure. An example program can be found here [6].
2. Split implementation between IPv4 / IPv6. While the implementation is
currently similar, there are some differences between both address
families. In addition, some extensions (e.g., RFC 8883 [7]) are
IPv6-specific. Given the above and given that the implementation is not
very complex, it makes sense to keep both implementations separate.
3. Compatibility with legacy applications. RFC 4884 from 2007 extended
certain ICMP messages with a length field that encodes the length of the
"original datagram" field, so that applications will be able to tell
where the "original datagram" ends and where the ICMP extension
structure starts.
Before the introduction of the IP{,6}_RECVERR_RFC4884 socket options
[8][9] in 2020 it was impossible for applications to know where the ICMP
extension structure starts and to this day some applications assume that
it starts at offset 128, which is the minimum length of the "original
datagram" field as specified by RFC 4884.
Therefore, in order to be compatible with both legacy and modern
applications, the datagram that elicited the ICMP error is trimmed /
padded to 128 bytes before appending the ICMP extension structure.
This behavior is specifically called out by RFC 4884: "Those wishing to
be backward compatible with non-compliant TRACEROUTE implementations
will include exactly 128 octets" [10].
Note that in 128 bytes we should be able to include enough headers for
the originating node to match the ICMP error message with the relevant
socket. For example, the following headers will be present in the
"original datagram" field when a VXLAN encapsulated IPv6 packet elicits
an ICMP error in an IPv6 underlay: IPv6 (40) | UDP (8) | VXLAN (8) | Eth
(14) | IPv6 (40) | UDP (8). Overall, 118 bytes.
If the 128 bytes limit proves to be insufficient for some use case, we
can consider dedicating a new bit in the previously mentioned sysctl to
allow for more bytes to be included in the "original datagram" field.
4. Extensibility. This patchset adds partial support for a single ICMP
extension. However, the interface and the implementation should be able
to support more extensions, if needed. Examples:
* More interface information objects as part of RFC 5837. We should be
able to derive the outgoing interface information and nexthop IP from
the dst entry attached to the packet that elicited the error.
* Node identification object (e.g., hostname / loopback IP) [11].
* Extended Information object which encodes aggregate header limits as
part of RFC 8883.
A previous proposal from Ishaan Gandhi and Ron Bonica is available here
[12].
Testing
=======
The existing traceroute selftest is extended to test that ICMP
extensions are reported correctly when enabled. Both address families
are tested and with different packet sizes in order to make sure that
trimming / padding works correctly. Tested that packets are parsed
correctly by the IP{,6}_RECVERR_RFC4884 socket options using Willem's
selftest [13].
Changelog
=========
Changes since v1 [14]:
* Patches #1-#2: Added a comment about field ordering and review tags.
* Patch #3: Converted "sysctl" to "echo" when testing the return value.
Added a check to skip the test if traceroute version is older
than 2.1.5.
[1] https://datatracker.ietf.org/doc/html/rfc5837
[2] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1c2fb7f93cb20621772bf304f3dba0849942e5db
[3] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=fac6fce9bdb59837bb89930c3a92f5e0d1482f0b
[4] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4a8c416602d97a4e2073ed563d4d4c7627de19cf
[5] https://datatracker.ietf.org/doc/html/rfc4884
[6] https://gist.github.com/idosch/5013448cdb5e9e060e6bfdc8b433577c
[7] https://datatracker.ietf.org/doc/html/rfc8883
[8] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=eba75c587e811d3249c8bd50d22bb2266ccd3c0f
[9] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=01370434df85eb76ecb1527a4466013c4aca2436
[10] https://datatracker.ietf.org/doc/html/rfc4884#section-5.3
[11] https://datatracker.ietf.org/doc/html/draft-ietf-intarea-extended-icmp-nodeid-04
[12] https://lore.kernel.org/netdev/[email protected]/
[13] https://lore.kernel.org/netdev/aPpMItF35gwpgzZx@shredder/
[14] https://lore.kernel.org/netdev/[email protected]/
====================
Link: https://patch.msgid.link/[email protected]
Signed-off-by: Jakub Kicinski <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Nov 4, 2025
On completion of i915_vma_pin_ww(), a synchronous variant of dma_fence_work_commit() is called. When pinning a VMA to GGTT address space on a Cherry View family processor, or on a Broxton generation SoC with VTD enabled, i.e., when stop_machine() is then called from intel_ggtt_bind_vma(), that can potentially lead to lock inversion among reservation_ww and cpu_hotplug locks. [86.861179] ====================================================== [86.861193] WARNING: possible circular locking dependency detected [86.861209] 6.15.0-rc5-CI_DRM_16515-gca0305cadc2d+ #1 Tainted: G U [86.861226] ------------------------------------------------------ [86.861238] i915_module_loa/1432 is trying to acquire lock: [86.861252] ffffffff83489090 (cpu_hotplug_lock){++++}-{0:0}, at: stop_machine+0x1c/0x50 [86.861290] but task is already holding lock: [86.861303] ffffc90002e0b4c8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_vma_pin.constprop.0+0x39/0x1d0 [i915] [86.862233] which lock already depends on the new lock. [86.862251] the existing dependency chain (in reverse order) is: [86.862265] -> #5 (reservation_ww_class_mutex){+.+.}-{3:3}: [86.862292] dma_resv_lockdep+0x19a/0x390 [86.862315] do_one_initcall+0x60/0x3f0 [86.862334] kernel_init_freeable+0x3cd/0x680 [86.862353] kernel_init+0x1b/0x200 [86.862369] ret_from_fork+0x47/0x70 [86.862383] ret_from_fork_asm+0x1a/0x30 [86.862399] -> #4 (reservation_ww_class_acquire){+.+.}-{0:0}: [86.862425] dma_resv_lockdep+0x178/0x390 [86.862440] do_one_initcall+0x60/0x3f0 [86.862454] kernel_init_freeable+0x3cd/0x680 [86.862470] kernel_init+0x1b/0x200 [86.862482] ret_from_fork+0x47/0x70 [86.862495] ret_from_fork_asm+0x1a/0x30 [86.862509] -> #3 (&mm->mmap_lock){++++}-{3:3}: [86.862531] down_read_killable+0x46/0x1e0 [86.862546] lock_mm_and_find_vma+0xa2/0x280 [86.862561] do_user_addr_fault+0x266/0x8e0 [86.862578] exc_page_fault+0x8a/0x2f0 [86.862593] asm_exc_page_fault+0x27/0x30 [86.862607] filldir64+0xeb/0x180 [86.862620] kernfs_fop_readdir+0x118/0x480 [86.862635] iterate_dir+0xcf/0x2b0 [86.862648] __x64_sys_getdents64+0x84/0x140 [86.862661] x64_sys_call+0x1058/0x2660 [86.862675] do_syscall_64+0x91/0xe90 [86.862689] entry_SYSCALL_64_after_hwframe+0x76/0x7e [86.862703] -> #2 (&root->kernfs_rwsem){++++}-{3:3}: [86.862725] down_write+0x3e/0xf0 [86.862738] kernfs_add_one+0x30/0x3c0 [86.862751] kernfs_create_dir_ns+0x53/0xb0 [86.862765] internal_create_group+0x134/0x4c0 [86.862779] sysfs_create_group+0x13/0x20 [86.862792] topology_add_dev+0x1d/0x30 [86.862806] cpuhp_invoke_callback+0x4b5/0x850 [86.862822] cpuhp_issue_call+0xbf/0x1f0 [86.862836] __cpuhp_setup_state_cpuslocked+0x111/0x320 [86.862852] __cpuhp_setup_state+0xb0/0x220 [86.862866] topology_sysfs_init+0x30/0x50 [86.862879] do_one_initcall+0x60/0x3f0 [86.862893] kernel_init_freeable+0x3cd/0x680 [86.862908] kernel_init+0x1b/0x200 [86.862921] ret_from_fork+0x47/0x70 [86.862934] ret_from_fork_asm+0x1a/0x30 [86.862947] -> #1 (cpuhp_state_mutex){+.+.}-{3:3}: [86.862969] __mutex_lock+0xaa/0xed0 [86.862982] mutex_lock_nested+0x1b/0x30 [86.862995] __cpuhp_setup_state_cpuslocked+0x67/0x320 [86.863012] __cpuhp_setup_state+0xb0/0x220 [86.863026] page_alloc_init_cpuhp+0x2d/0x60 [86.863041] mm_core_init+0x22/0x2d0 [86.863054] start_kernel+0x576/0xbd0 [86.863068] x86_64_start_reservations+0x18/0x30 [86.863084] x86_64_start_kernel+0xbf/0x110 [86.863098] common_startup_64+0x13e/0x141 [86.863114] -> #0 (cpu_hotplug_lock){++++}-{0:0}: [86.863135] __lock_acquire+0x1635/0x2810 [86.863152] lock_acquire+0xc4/0x2f0 [86.863166] cpus_read_lock+0x41/0x100 [86.863180] stop_machine+0x1c/0x50 [86.863194] bxt_vtd_ggtt_insert_entries__BKL+0x3b/0x60 [i915] [86.863987] intel_ggtt_bind_vma+0x43/0x70 [i915] [86.864735] __vma_bind+0x55/0x70 [i915] [86.865510] fence_work+0x26/0xa0 [i915] [86.866248] fence_notify+0xa1/0x140 [i915] [86.866983] __i915_sw_fence_complete+0x8f/0x270 [i915] [86.867719] i915_sw_fence_commit+0x39/0x60 [i915] [86.868453] i915_vma_pin_ww+0x462/0x1360 [i915] [86.869228] i915_vma_pin.constprop.0+0x133/0x1d0 [i915] [86.870001] initial_plane_vma+0x307/0x840 [i915] [86.870774] intel_initial_plane_config+0x33f/0x670 [i915] [86.871546] intel_display_driver_probe_nogem+0x1c6/0x260 [i915] [86.872330] i915_driver_probe+0x7fa/0xe80 [i915] [86.873057] i915_pci_probe+0xe6/0x220 [i915] [86.873782] local_pci_probe+0x47/0xb0 [86.873802] pci_device_probe+0xf3/0x260 [86.873817] really_probe+0xf1/0x3c0 [86.873833] __driver_probe_device+0x8c/0x180 [86.873848] driver_probe_device+0x24/0xd0 [86.873862] __driver_attach+0x10f/0x220 [86.873876] bus_for_each_dev+0x7f/0xe0 [86.873892] driver_attach+0x1e/0x30 [86.873904] bus_add_driver+0x151/0x290 [86.873917] driver_register+0x5e/0x130 [86.873931] __pci_register_driver+0x7d/0x90 [86.873945] i915_pci_register_driver+0x23/0x30 [i915] [86.874678] i915_init+0x37/0x120 [i915] [86.875347] do_one_initcall+0x60/0x3f0 [86.875369] do_init_module+0x97/0x2a0 [86.875385] load_module+0x2c54/0x2d80 [86.875398] init_module_from_file+0x96/0xe0 [86.875413] idempotent_init_module+0x117/0x330 [86.875426] __x64_sys_finit_module+0x77/0x100 [86.875440] x64_sys_call+0x24de/0x2660 [86.875454] do_syscall_64+0x91/0xe90 [86.875470] entry_SYSCALL_64_after_hwframe+0x76/0x7e [86.875486] other info that might help us debug this: [86.875502] Chain exists of: cpu_hotplug_lock --> reservation_ww_class_acquire --> reservation_ww_class_mutex [86.875539] Possible unsafe locking scenario: [86.875552] CPU0 CPU1 [86.875563] ---- ---- [86.875573] lock(reservation_ww_class_mutex); [86.875588] lock(reservation_ww_class_acquire); [86.875606] lock(reservation_ww_class_mutex); [86.875624] rlock(cpu_hotplug_lock); [86.875637] *** DEADLOCK *** [86.875650] 3 locks held by i915_module_loa/1432: [86.875663] #0: ffff888101f5c1b0 (&dev->mutex){....}-{3:3}, at: __driver_attach+0x104/0x220 [86.875699] #1: ffffc90002e0b4a0 (reservation_ww_class_acquire){+.+.}-{0:0}, at: i915_vma_pin.constprop.0+0x39/0x1d0 [i915] [86.876512] #2: ffffc90002e0b4c8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_vma_pin.constprop.0+0x39/0x1d0 [i915] [86.877305] stack backtrace: [86.877326] CPU: 0 UID: 0 PID: 1432 Comm: i915_module_loa Tainted: G U 6.15.0-rc5-CI_DRM_16515-gca0305cadc2d+ #1 PREEMPT(voluntary) [86.877334] Tainted: [U]=USER [86.877336] Hardware name: /NUC5CPYB, BIOS PYBSWCEL.86A.0079.2020.0420.1316 04/20/2020 [86.877339] Call Trace: [86.877344] <TASK> [86.877353] dump_stack_lvl+0x91/0xf0 [86.877364] dump_stack+0x10/0x20 [86.877369] print_circular_bug+0x285/0x360 [86.877379] check_noncircular+0x135/0x150 [86.877390] __lock_acquire+0x1635/0x2810 [86.877403] lock_acquire+0xc4/0x2f0 [86.877408] ? stop_machine+0x1c/0x50 [86.877422] ? __pfx_bxt_vtd_ggtt_insert_entries__cb+0x10/0x10 [i915] [86.878173] cpus_read_lock+0x41/0x100 [86.878182] ? stop_machine+0x1c/0x50 [86.878191] ? __pfx_bxt_vtd_ggtt_insert_entries__cb+0x10/0x10 [i915] [86.878916] stop_machine+0x1c/0x50 [86.878927] bxt_vtd_ggtt_insert_entries__BKL+0x3b/0x60 [i915] [86.879652] intel_ggtt_bind_vma+0x43/0x70 [i915] [86.880375] __vma_bind+0x55/0x70 [i915] [86.881133] fence_work+0x26/0xa0 [i915] [86.881851] fence_notify+0xa1/0x140 [i915] [86.882566] __i915_sw_fence_complete+0x8f/0x270 [i915] [86.883286] i915_sw_fence_commit+0x39/0x60 [i915] [86.884003] i915_vma_pin_ww+0x462/0x1360 [i915] [86.884756] ? i915_vma_pin.constprop.0+0x6c/0x1d0 [i915] [86.885513] i915_vma_pin.constprop.0+0x133/0x1d0 [i915] [86.886281] initial_plane_vma+0x307/0x840 [i915] [86.887049] intel_initial_plane_config+0x33f/0x670 [i915] [86.887819] intel_display_driver_probe_nogem+0x1c6/0x260 [i915] [86.888587] i915_driver_probe+0x7fa/0xe80 [i915] [86.889293] ? mutex_unlock+0x12/0x20 [86.889301] ? drm_privacy_screen_get+0x171/0x190 [86.889308] ? acpi_dev_found+0x66/0x80 [86.889321] i915_pci_probe+0xe6/0x220 [i915] [86.890038] local_pci_probe+0x47/0xb0 [86.890049] pci_device_probe+0xf3/0x260 [86.890058] really_probe+0xf1/0x3c0 [86.890067] __driver_probe_device+0x8c/0x180 [86.890072] driver_probe_device+0x24/0xd0 [86.890078] __driver_attach+0x10f/0x220 [86.890083] ? __pfx___driver_attach+0x10/0x10 [86.890088] bus_for_each_dev+0x7f/0xe0 [86.890097] driver_attach+0x1e/0x30 [86.890101] bus_add_driver+0x151/0x290 [86.890107] driver_register+0x5e/0x130 [86.890113] __pci_register_driver+0x7d/0x90 [86.890119] i915_pci_register_driver+0x23/0x30 [i915] [86.890833] i915_init+0x37/0x120 [i915] [86.891482] ? __pfx_i915_init+0x10/0x10 [i915] [86.892135] do_one_initcall+0x60/0x3f0 [86.892145] ? __kmalloc_cache_noprof+0x33f/0x470 [86.892157] do_init_module+0x97/0x2a0 [86.892164] load_module+0x2c54/0x2d80 [86.892168] ? __kernel_read+0x15c/0x300 [86.892185] ? kernel_read_file+0x2b1/0x320 [86.892195] init_module_from_file+0x96/0xe0 [86.892199] ? init_module_from_file+0x96/0xe0 [86.892211] idempotent_init_module+0x117/0x330 [86.892224] __x64_sys_finit_module+0x77/0x100 [86.892230] x64_sys_call+0x24de/0x2660 [86.892236] do_syscall_64+0x91/0xe90 [86.892243] ? irqentry_exit+0x77/0xb0 [86.892249] ? sysvec_apic_timer_interrupt+0x57/0xc0 [86.892256] entry_SYSCALL_64_after_hwframe+0x76/0x7e [86.892261] RIP: 0033:0x7303e1b2725d [86.892271] Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 8b bb 0d 00 f7 d8 64 89 01 48 [86.892276] RSP: 002b:00007ffddd1fdb38 EFLAGS: 00000246 ORIG_RAX: 0000000000000139 [86.892281] RAX: ffffffffffffffda RBX: 00005d771d88fd90 RCX: 00007303e1b2725d [86.892285] RDX: 0000000000000000 RSI: 00005d771d893aa0 RDI: 000000000000000c [86.892287] RBP: 00007ffddd1fdbf0 R08: 0000000000000040 R09: 00007ffddd1fdb80 [86.892289] R10: 00007303e1c03b20 R11: 0000000000000246 R12: 00005d771d893aa0 [86.892292] R13: 0000000000000000 R14: 00005d771d88f0d0 R15: 00005d771d895710 [86.892304] </TASK> Call asynchronous variant of dma_fence_work_commit() in that case. v3: Provide more verbose in-line comment (Andi), - mention target environments in commit message. Fixes: 7d1c261 ("drm/i915: Take reservation lock around i915_vma_pin.") Closes: https://gitlab.freedesktop.org/drm/i915/kernel/-/issues/14985 Cc: Andi Shyti <[email protected]> Signed-off-by: Janusz Krzysztofik <[email protected]> Reviewed-by: Sebastian Brzezinka <[email protected]> Reviewed-by: Krzysztof Karas <[email protected]> Acked-by: Andi Shyti <[email protected]> Signed-off-by: Andi Shyti <[email protected]> Link: https://lore.kernel.org/r/[email protected] (cherry picked from commit 648ef13) Signed-off-by: Rodrigo Vivi <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Nov 4, 2025
When using perf record with the `--overwrite` option, a segmentation fault
occurs if an event fails to open. For example:
perf record -e cycles-ct -F 1000 -a --overwrite
Error:
cycles-ct:H: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'
perf: Segmentation fault
#0 0x6466b6 in dump_stack debug.c:366
#1 0x646729 in sighandler_dump_stack debug.c:378
#2 0x453fd1 in sigsegv_handler builtin-record.c:722
#3 0x7f8454e65090 in __restore_rt libc-2.32.so[54090]
#4 0x6c5671 in __perf_event__synthesize_id_index synthetic-events.c:1862
#5 0x6c5ac0 in perf_event__synthesize_id_index synthetic-events.c:1943
torvalds#6 0x458090 in record__synthesize builtin-record.c:2075
torvalds#7 0x45a85a in __cmd_record builtin-record.c:2888
torvalds#8 0x45deb6 in cmd_record builtin-record.c:4374
torvalds#9 0x4e5e33 in run_builtin perf.c:349
torvalds#10 0x4e60bf in handle_internal_command perf.c:401
torvalds#11 0x4e6215 in run_argv perf.c:448
torvalds#12 0x4e653a in main perf.c:555
torvalds#13 0x7f8454e4fa72 in __libc_start_main libc-2.32.so[3ea72]
torvalds#14 0x43a3ee in _start ??:0
The --overwrite option implies --tail-synthesize, which collects non-sample
events reflecting the system status when recording finishes. However, when
evsel opening fails (e.g., unsupported event 'cycles-ct'), session->evlist
is not initialized and remains NULL. The code unconditionally calls
record__synthesize() in the error path, which iterates through the NULL
evlist pointer and causes a segfault.
To fix it, move the record__synthesize() call inside the error check block, so
it's only called when there was no error during recording, ensuring that evlist
is properly initialized.
Fixes: 4ea648a ("perf record: Add --tail-synthesize option")
Signed-off-by: Shuai Xue <[email protected]>
Signed-off-by: Namhyung Kim <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Nov 5, 2025
Add VMX exit handlers for SEAMCALL and TDCALL to inject a #UD if a non-TD guest attempts to execute SEAMCALL or TDCALL. Neither SEAMCALL nor TDCALL is gated by any software enablement other than VMXON, and so will generate a VM-Exit instead of e.g. a native #UD when executed from the guest kernel. Note! No unprivileged DoS of the L1 kernel is possible as TDCALL and SEAMCALL #GP at CPL > 0, and the CPL check is performed prior to the VMX non-root (VM-Exit) check, i.e. userspace can't crash the VM. And for a nested guest, KVM forwards unknown exits to L1, i.e. an L2 kernel can crash itself, but not L1. Note #2! The Intel® Trust Domain CPU Architectural Extensions spec's pseudocode shows the CPL > 0 check for SEAMCALL coming _after_ the VM-Exit, but that appears to be a documentation bug (likely because the CPL > 0 check was incorrectly bundled with other lower-priority #GP checks). Testing on SPR and EMR shows that the CPL > 0 check is performed before the VMX non-root check, i.e. SEAMCALL #GPs when executed in usermode. Note #3! The aforementioned Trust Domain spec uses confusing pseudocode that says that SEAMCALL will #UD if executed "inSEAM", but "inSEAM" specifically means in SEAM Root Mode, i.e. in the TDX-Module. The long- form description explicitly states that SEAMCALL generates an exit when executed in "SEAM VMX non-root operation". But that's a moot point as the TDX-Module injects #UD if the guest attempts to execute SEAMCALL, as documented in the "Unconditionally Blocked Instructions" section of the TDX-Module base specification. Cc: [email protected] Cc: Kai Huang <[email protected]> Cc: Xiaoyao Li <[email protected]> Cc: Rick Edgecombe <[email protected]> Cc: Dan Williams <[email protected]> Cc: Binbin Wu <[email protected]> Reviewed-by: Kai Huang <[email protected]> Reviewed-by: Binbin Wu <[email protected]> Reviewed-by: Xiaoyao Li <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Sean Christopherson <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Nov 6, 2025
Michael Chan says: ==================== bnxt_en: Bug fixes Patches 1, 3, and 4 are bug fixes related to the FW log tracing driver coredump feature recently added in 6.13. Patch #1 adds the necessary call to shutdown the FW logging DMA during PCI shutdown. Patch #3 fixes a possible null pointer derefernce when using early versions of the FW with this feature. Patch #4 adds the coredump header information unconditionally to make it more robust. Patch #2 fixes a possible memory leak during PTP shutdown. Patch #5 eliminates a dmesg warning when doing devlink reload. ==================== Link: https://patch.msgid.link/[email protected] Signed-off-by: Jakub Kicinski <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Nov 18, 2025
The following warning appears when running syzkaller, and this issue also exists in the mainline code. ------------[ cut here ]------------ list_add double add: new=ffffffffa57eee28, prev=ffffffffa57eee28, next=ffffffffa5e63100. WARNING: CPU: 0 PID: 1491 at lib/list_debug.c:35 __list_add_valid_or_report+0xf7/0x130 Modules linked in: CPU: 0 PID: 1491 Comm: syz.1.28 Not tainted 6.6.0+ #3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:__list_add_valid_or_report+0xf7/0x130 RSP: 0018:ff1100010dfb7b78 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffffffffa57eee18 RCX: ffffffff97fc9817 RDX: 0000000000040000 RSI: ffa0000002383000 RDI: 0000000000000001 RBP: ffffffffa57eee28 R08: 0000000000000001 R09: ffe21c0021bf6f2c R10: 0000000000000001 R11: 6464615f7473696c R12: ffffffffa5e63100 R13: ffffffffa57eee28 R14: ffffffffa57eee28 R15: ff1100010dfb7d48 FS: 00007fb14398b640(0000) GS:ff11000119600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000010d096005 CR4: 0000000000773ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 80000000 Call Trace: <TASK> input_register_handler+0xb3/0x210 mac_hid_start_emulation+0x1c5/0x290 mac_hid_toggle_emumouse+0x20a/0x240 proc_sys_call_handler+0x4c2/0x6e0 new_sync_write+0x1b1/0x2d0 vfs_write+0x709/0x950 ksys_write+0x12a/0x250 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x78/0xe2 The WARNING occurs when two processes concurrently write to the mac-hid emulation sysctl, causing a race condition in mac_hid_toggle_emumouse(). Both processes read old_val=0, then both try to register the input handler, leading to a double list_add of the same handler. CPU0 CPU1 ------------------------- ------------------------- vfs_write() //write 1 vfs_write() //write 1 proc_sys_write() proc_sys_write() mac_hid_toggle_emumouse() mac_hid_toggle_emumouse() old_val = *valp // old_val=0 old_val = *valp // old_val=0 mutex_lock_killable() proc_dointvec() // *valp=1 mac_hid_start_emulation() input_register_handler() mutex_unlock() mutex_lock_killable() proc_dointvec() mac_hid_start_emulation() input_register_handler() //Trigger Warning mutex_unlock() Fix this by moving the old_val read inside the mutex lock region. Fixes: 99b089c ("Input: Mac button emulation - implement as an input filter") Signed-off-by: Long Li <[email protected]> Signed-off-by: Madhavan Srinivasan <[email protected]> Link: https://patch.msgid.link/[email protected]
akiyks
pushed a commit
that referenced
this pull request
Nov 18, 2025
Leon Hwang says: ==================== In the discussion thread "[PATCH bpf-next v9 0/7] bpf: Introduce BPF_F_CPU and BPF_F_ALL_CPUS flags for percpu maps"[1], it was pointed out that missing calls to bpf_obj_free_fields() could lead to memory leaks. A selftest was added to confirm that this is indeed a real issue - the refcount of BPF_KPTR_REF field is not decremented when bpf_obj_free_fields() is missing after copy_map_value[,_long](). Further inspection of copy_map_value[,_long]() call sites revealed two locations affected by this issue: 1. pcpu_copy_value() 2. htab_map_update_elem() when used with BPF_F_LOCK Similar case happens when update local storage maps with BPF_F_LOCK. This series fixes the cases where BPF_F_LOCK is not involved by properly calling bpf_obj_free_fields() after copy_map_value[,_long](), and adds a selftest to verify the fix. The remaining cases involving BPF_F_LOCK will be addressed in a separate patch set after the series "bpf: Introduce BPF_F_CPU and BPF_F_ALL_CPUS flags for percpu maps" is applied. Changes: v5 -> v6: * Update the test name to include "refcounted_kptr". * Update some local variables' name in the test (per Alexei). * v5: https://lore.kernel.org/bpf/[email protected]/ v4 -> v5: * Use a local variable to store the this_cpu_ptr()/per_cpu_ptr() result, and reuse it between copy_map_value[,_long]() and bpf_obj_free_fields() in patch #1 (per Andrii). * Drop patch #2 and #3, because the combination of BPF_F_LOCK with other special fields (except for BPF_SPIN_LOCK) will be disallowed on the UAPI side in the future (per Alexei). * v4: https://lore.kernel.org/bpf/[email protected]/ v3 -> v4: * Target bpf-next tree. * Address comments from Amery: * Drop 'bpf_obj_free_fields()' in the path of updating local storage maps without BPF_F_LOCK. * Drop the corresponding self test. * Respin the other test of local storage maps using syscall BPF programs. * v3: https://lore.kernel.org/bpf/[email protected]/ v2 -> v3: * Free special fields when update local storage maps without BPF_F_LOCK. * Add test to verify decrementing refcount when update cgroup local storage maps without BPF_F_LOCK. * Address review from AI bot: * Slow path with BPF_F_LOCK (around line 642-646) in 'bpf_local_storage.c'. * v2: https://lore.kernel.org/bpf/[email protected]/ v1 -> v2: * Add test to verify decrementing refcount when update cgroup local storage maps with BPF_F_LOCK. * Address review from AI bot: * Fast path without bucket lock (around line 610) in 'bpf_local_storage.c'. * v1: https://lore.kernel.org/bpf/[email protected]/ ==================== Link: https://patch.msgid.link/[email protected] Signed-off-by: Alexei Starovoitov <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Nov 18, 2025
On completion of i915_vma_pin_ww(), a synchronous variant of dma_fence_work_commit() is called. When pinning a VMA to GGTT address space on a Cherry View family processor, or on a Broxton generation SoC with VTD enabled, i.e., when stop_machine() is then called from intel_ggtt_bind_vma(), that can potentially lead to lock inversion among reservation_ww and cpu_hotplug locks. [86.861179] ====================================================== [86.861193] WARNING: possible circular locking dependency detected [86.861209] 6.15.0-rc5-CI_DRM_16515-gca0305cadc2d+ #1 Tainted: G U [86.861226] ------------------------------------------------------ [86.861238] i915_module_loa/1432 is trying to acquire lock: [86.861252] ffffffff83489090 (cpu_hotplug_lock){++++}-{0:0}, at: stop_machine+0x1c/0x50 [86.861290] but task is already holding lock: [86.861303] ffffc90002e0b4c8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_vma_pin.constprop.0+0x39/0x1d0 [i915] [86.862233] which lock already depends on the new lock. [86.862251] the existing dependency chain (in reverse order) is: [86.862265] -> #5 (reservation_ww_class_mutex){+.+.}-{3:3}: [86.862292] dma_resv_lockdep+0x19a/0x390 [86.862315] do_one_initcall+0x60/0x3f0 [86.862334] kernel_init_freeable+0x3cd/0x680 [86.862353] kernel_init+0x1b/0x200 [86.862369] ret_from_fork+0x47/0x70 [86.862383] ret_from_fork_asm+0x1a/0x30 [86.862399] -> #4 (reservation_ww_class_acquire){+.+.}-{0:0}: [86.862425] dma_resv_lockdep+0x178/0x390 [86.862440] do_one_initcall+0x60/0x3f0 [86.862454] kernel_init_freeable+0x3cd/0x680 [86.862470] kernel_init+0x1b/0x200 [86.862482] ret_from_fork+0x47/0x70 [86.862495] ret_from_fork_asm+0x1a/0x30 [86.862509] -> #3 (&mm->mmap_lock){++++}-{3:3}: [86.862531] down_read_killable+0x46/0x1e0 [86.862546] lock_mm_and_find_vma+0xa2/0x280 [86.862561] do_user_addr_fault+0x266/0x8e0 [86.862578] exc_page_fault+0x8a/0x2f0 [86.862593] asm_exc_page_fault+0x27/0x30 [86.862607] filldir64+0xeb/0x180 [86.862620] kernfs_fop_readdir+0x118/0x480 [86.862635] iterate_dir+0xcf/0x2b0 [86.862648] __x64_sys_getdents64+0x84/0x140 [86.862661] x64_sys_call+0x1058/0x2660 [86.862675] do_syscall_64+0x91/0xe90 [86.862689] entry_SYSCALL_64_after_hwframe+0x76/0x7e [86.862703] -> #2 (&root->kernfs_rwsem){++++}-{3:3}: [86.862725] down_write+0x3e/0xf0 [86.862738] kernfs_add_one+0x30/0x3c0 [86.862751] kernfs_create_dir_ns+0x53/0xb0 [86.862765] internal_create_group+0x134/0x4c0 [86.862779] sysfs_create_group+0x13/0x20 [86.862792] topology_add_dev+0x1d/0x30 [86.862806] cpuhp_invoke_callback+0x4b5/0x850 [86.862822] cpuhp_issue_call+0xbf/0x1f0 [86.862836] __cpuhp_setup_state_cpuslocked+0x111/0x320 [86.862852] __cpuhp_setup_state+0xb0/0x220 [86.862866] topology_sysfs_init+0x30/0x50 [86.862879] do_one_initcall+0x60/0x3f0 [86.862893] kernel_init_freeable+0x3cd/0x680 [86.862908] kernel_init+0x1b/0x200 [86.862921] ret_from_fork+0x47/0x70 [86.862934] ret_from_fork_asm+0x1a/0x30 [86.862947] -> #1 (cpuhp_state_mutex){+.+.}-{3:3}: [86.862969] __mutex_lock+0xaa/0xed0 [86.862982] mutex_lock_nested+0x1b/0x30 [86.862995] __cpuhp_setup_state_cpuslocked+0x67/0x320 [86.863012] __cpuhp_setup_state+0xb0/0x220 [86.863026] page_alloc_init_cpuhp+0x2d/0x60 [86.863041] mm_core_init+0x22/0x2d0 [86.863054] start_kernel+0x576/0xbd0 [86.863068] x86_64_start_reservations+0x18/0x30 [86.863084] x86_64_start_kernel+0xbf/0x110 [86.863098] common_startup_64+0x13e/0x141 [86.863114] -> #0 (cpu_hotplug_lock){++++}-{0:0}: [86.863135] __lock_acquire+0x1635/0x2810 [86.863152] lock_acquire+0xc4/0x2f0 [86.863166] cpus_read_lock+0x41/0x100 [86.863180] stop_machine+0x1c/0x50 [86.863194] bxt_vtd_ggtt_insert_entries__BKL+0x3b/0x60 [i915] [86.863987] intel_ggtt_bind_vma+0x43/0x70 [i915] [86.864735] __vma_bind+0x55/0x70 [i915] [86.865510] fence_work+0x26/0xa0 [i915] [86.866248] fence_notify+0xa1/0x140 [i915] [86.866983] __i915_sw_fence_complete+0x8f/0x270 [i915] [86.867719] i915_sw_fence_commit+0x39/0x60 [i915] [86.868453] i915_vma_pin_ww+0x462/0x1360 [i915] [86.869228] i915_vma_pin.constprop.0+0x133/0x1d0 [i915] [86.870001] initial_plane_vma+0x307/0x840 [i915] [86.870774] intel_initial_plane_config+0x33f/0x670 [i915] [86.871546] intel_display_driver_probe_nogem+0x1c6/0x260 [i915] [86.872330] i915_driver_probe+0x7fa/0xe80 [i915] [86.873057] i915_pci_probe+0xe6/0x220 [i915] [86.873782] local_pci_probe+0x47/0xb0 [86.873802] pci_device_probe+0xf3/0x260 [86.873817] really_probe+0xf1/0x3c0 [86.873833] __driver_probe_device+0x8c/0x180 [86.873848] driver_probe_device+0x24/0xd0 [86.873862] __driver_attach+0x10f/0x220 [86.873876] bus_for_each_dev+0x7f/0xe0 [86.873892] driver_attach+0x1e/0x30 [86.873904] bus_add_driver+0x151/0x290 [86.873917] driver_register+0x5e/0x130 [86.873931] __pci_register_driver+0x7d/0x90 [86.873945] i915_pci_register_driver+0x23/0x30 [i915] [86.874678] i915_init+0x37/0x120 [i915] [86.875347] do_one_initcall+0x60/0x3f0 [86.875369] do_init_module+0x97/0x2a0 [86.875385] load_module+0x2c54/0x2d80 [86.875398] init_module_from_file+0x96/0xe0 [86.875413] idempotent_init_module+0x117/0x330 [86.875426] __x64_sys_finit_module+0x77/0x100 [86.875440] x64_sys_call+0x24de/0x2660 [86.875454] do_syscall_64+0x91/0xe90 [86.875470] entry_SYSCALL_64_after_hwframe+0x76/0x7e [86.875486] other info that might help us debug this: [86.875502] Chain exists of: cpu_hotplug_lock --> reservation_ww_class_acquire --> reservation_ww_class_mutex [86.875539] Possible unsafe locking scenario: [86.875552] CPU0 CPU1 [86.875563] ---- ---- [86.875573] lock(reservation_ww_class_mutex); [86.875588] lock(reservation_ww_class_acquire); [86.875606] lock(reservation_ww_class_mutex); [86.875624] rlock(cpu_hotplug_lock); [86.875637] *** DEADLOCK *** [86.875650] 3 locks held by i915_module_loa/1432: [86.875663] #0: ffff888101f5c1b0 (&dev->mutex){....}-{3:3}, at: __driver_attach+0x104/0x220 [86.875699] #1: ffffc90002e0b4a0 (reservation_ww_class_acquire){+.+.}-{0:0}, at: i915_vma_pin.constprop.0+0x39/0x1d0 [i915] [86.876512] #2: ffffc90002e0b4c8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_vma_pin.constprop.0+0x39/0x1d0 [i915] [86.877305] stack backtrace: [86.877326] CPU: 0 UID: 0 PID: 1432 Comm: i915_module_loa Tainted: G U 6.15.0-rc5-CI_DRM_16515-gca0305cadc2d+ #1 PREEMPT(voluntary) [86.877334] Tainted: [U]=USER [86.877336] Hardware name: /NUC5CPYB, BIOS PYBSWCEL.86A.0079.2020.0420.1316 04/20/2020 [86.877339] Call Trace: [86.877344] <TASK> [86.877353] dump_stack_lvl+0x91/0xf0 [86.877364] dump_stack+0x10/0x20 [86.877369] print_circular_bug+0x285/0x360 [86.877379] check_noncircular+0x135/0x150 [86.877390] __lock_acquire+0x1635/0x2810 [86.877403] lock_acquire+0xc4/0x2f0 [86.877408] ? stop_machine+0x1c/0x50 [86.877422] ? __pfx_bxt_vtd_ggtt_insert_entries__cb+0x10/0x10 [i915] [86.878173] cpus_read_lock+0x41/0x100 [86.878182] ? stop_machine+0x1c/0x50 [86.878191] ? __pfx_bxt_vtd_ggtt_insert_entries__cb+0x10/0x10 [i915] [86.878916] stop_machine+0x1c/0x50 [86.878927] bxt_vtd_ggtt_insert_entries__BKL+0x3b/0x60 [i915] [86.879652] intel_ggtt_bind_vma+0x43/0x70 [i915] [86.880375] __vma_bind+0x55/0x70 [i915] [86.881133] fence_work+0x26/0xa0 [i915] [86.881851] fence_notify+0xa1/0x140 [i915] [86.882566] __i915_sw_fence_complete+0x8f/0x270 [i915] [86.883286] i915_sw_fence_commit+0x39/0x60 [i915] [86.884003] i915_vma_pin_ww+0x462/0x1360 [i915] [86.884756] ? i915_vma_pin.constprop.0+0x6c/0x1d0 [i915] [86.885513] i915_vma_pin.constprop.0+0x133/0x1d0 [i915] [86.886281] initial_plane_vma+0x307/0x840 [i915] [86.887049] intel_initial_plane_config+0x33f/0x670 [i915] [86.887819] intel_display_driver_probe_nogem+0x1c6/0x260 [i915] [86.888587] i915_driver_probe+0x7fa/0xe80 [i915] [86.889293] ? mutex_unlock+0x12/0x20 [86.889301] ? drm_privacy_screen_get+0x171/0x190 [86.889308] ? acpi_dev_found+0x66/0x80 [86.889321] i915_pci_probe+0xe6/0x220 [i915] [86.890038] local_pci_probe+0x47/0xb0 [86.890049] pci_device_probe+0xf3/0x260 [86.890058] really_probe+0xf1/0x3c0 [86.890067] __driver_probe_device+0x8c/0x180 [86.890072] driver_probe_device+0x24/0xd0 [86.890078] __driver_attach+0x10f/0x220 [86.890083] ? __pfx___driver_attach+0x10/0x10 [86.890088] bus_for_each_dev+0x7f/0xe0 [86.890097] driver_attach+0x1e/0x30 [86.890101] bus_add_driver+0x151/0x290 [86.890107] driver_register+0x5e/0x130 [86.890113] __pci_register_driver+0x7d/0x90 [86.890119] i915_pci_register_driver+0x23/0x30 [i915] [86.890833] i915_init+0x37/0x120 [i915] [86.891482] ? __pfx_i915_init+0x10/0x10 [i915] [86.892135] do_one_initcall+0x60/0x3f0 [86.892145] ? __kmalloc_cache_noprof+0x33f/0x470 [86.892157] do_init_module+0x97/0x2a0 [86.892164] load_module+0x2c54/0x2d80 [86.892168] ? __kernel_read+0x15c/0x300 [86.892185] ? kernel_read_file+0x2b1/0x320 [86.892195] init_module_from_file+0x96/0xe0 [86.892199] ? init_module_from_file+0x96/0xe0 [86.892211] idempotent_init_module+0x117/0x330 [86.892224] __x64_sys_finit_module+0x77/0x100 [86.892230] x64_sys_call+0x24de/0x2660 [86.892236] do_syscall_64+0x91/0xe90 [86.892243] ? irqentry_exit+0x77/0xb0 [86.892249] ? sysvec_apic_timer_interrupt+0x57/0xc0 [86.892256] entry_SYSCALL_64_after_hwframe+0x76/0x7e [86.892261] RIP: 0033:0x7303e1b2725d [86.892271] Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 8b bb 0d 00 f7 d8 64 89 01 48 [86.892276] RSP: 002b:00007ffddd1fdb38 EFLAGS: 00000246 ORIG_RAX: 0000000000000139 [86.892281] RAX: ffffffffffffffda RBX: 00005d771d88fd90 RCX: 00007303e1b2725d [86.892285] RDX: 0000000000000000 RSI: 00005d771d893aa0 RDI: 000000000000000c [86.892287] RBP: 00007ffddd1fdbf0 R08: 0000000000000040 R09: 00007ffddd1fdb80 [86.892289] R10: 00007303e1c03b20 R11: 0000000000000246 R12: 00005d771d893aa0 [86.892292] R13: 0000000000000000 R14: 00005d771d88f0d0 R15: 00005d771d895710 [86.892304] </TASK> Call asynchronous variant of dma_fence_work_commit() in that case. v3: Provide more verbose in-line comment (Andi), - mention target environments in commit message. Fixes: 7d1c261 ("drm/i915: Take reservation lock around i915_vma_pin.") Closes: https://gitlab.freedesktop.org/drm/i915/kernel/-/issues/14985 Cc: Andi Shyti <[email protected]> Signed-off-by: Janusz Krzysztofik <[email protected]> Reviewed-by: Sebastian Brzezinka <[email protected]> Reviewed-by: Krzysztof Karas <[email protected]> Acked-by: Andi Shyti <[email protected]> Signed-off-by: Andi Shyti <[email protected]> Link: https://lore.kernel.org/r/[email protected]
akiyks
pushed a commit
that referenced
this pull request
Nov 19, 2025
…/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 fixes for 6.18, take #3 - Only adjust the ID registers when no irqchip has been created once per VM run, instead of doing it once per vcpu, as this otherwise triggers a pretty bad conbsistency check failure in the sysreg code. - Make sure the per-vcpu Fine Grain Traps are computed before we load the system registers on the HW, as we otherwise start running without anything set until the first preemption of the vcpu.
akiyks
pushed a commit
that referenced
this pull request
Nov 20, 2025
When a large VM, specifically one that holds a significant number of PTEs, gets abruptly destroyed, the following warning is seen during the page-table walk: sched: CPU 0 need_resched set for > 100018840 ns (100 ticks) without schedule CPU: 0 UID: 0 PID: 9617 Comm: kvm_page_table_ Tainted: G O 6.16.0-smp-DEV #3 NONE Tainted: [O]=OOT_MODULE Call trace: show_stack+0x20/0x38 (C) dump_stack_lvl+0x3c/0xb8 dump_stack+0x18/0x30 resched_latency_warn+0x7c/0x88 sched_tick+0x1c4/0x268 update_process_times+0xa8/0xd8 tick_nohz_handler+0xc8/0x168 __hrtimer_run_queues+0x11c/0x338 hrtimer_interrupt+0x104/0x308 arch_timer_handler_phys+0x40/0x58 handle_percpu_devid_irq+0x8c/0x1b0 generic_handle_domain_irq+0x48/0x78 gic_handle_irq+0x1b8/0x408 call_on_irq_stack+0x24/0x30 do_interrupt_handler+0x54/0x78 el1_interrupt+0x44/0x88 el1h_64_irq_handler+0x18/0x28 el1h_64_irq+0x84/0x88 stage2_free_walker+0x30/0xa0 (P) __kvm_pgtable_walk+0x11c/0x258 __kvm_pgtable_walk+0x180/0x258 __kvm_pgtable_walk+0x180/0x258 __kvm_pgtable_walk+0x180/0x258 kvm_pgtable_walk+0xc4/0x140 kvm_pgtable_stage2_destroy+0x5c/0xf0 kvm_free_stage2_pgd+0x6c/0xe8 kvm_uninit_stage2_mmu+0x24/0x48 kvm_arch_flush_shadow_all+0x80/0xa0 kvm_mmu_notifier_release+0x38/0x78 __mmu_notifier_release+0x15c/0x250 exit_mmap+0x68/0x400 __mmput+0x38/0x1c8 mmput+0x30/0x68 exit_mm+0xd4/0x198 do_exit+0x1a4/0xb00 do_group_exit+0x8c/0x120 get_signal+0x6d4/0x778 do_signal+0x90/0x718 do_notify_resume+0x70/0x170 el0_svc+0x74/0xd8 el0t_64_sync_handler+0x60/0xc8 el0t_64_sync+0x1b0/0x1b8 The warning is seen majorly on the host kernels that are configured not to force-preempt, such as CONFIG_PREEMPT_NONE=y. To avoid this, instead of walking the entire page-table in one go, split it into smaller ranges, by checking for cond_resched() between each range. Since the path is executed during VM destruction, after the page-table structure is unlinked from the KVM MMU, relying on cond_resched_rwlock_write() isn't necessary. Signed-off-by: Raghavendra Rao Ananta <[email protected]> Link: https://msgid.link/[email protected] Signed-off-by: Oliver Upton <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Nov 25, 2025
For some reason, of_find_node_with_property() is creating a spinlock recursion issue along with fwnode_count_parents(), and this issue is making all MediaTek boards unbootable. As of kernel v6.18-rc6, there are only three users of this function, one of which is this driver. Migrate away from of_find_node_with_property() by adding a local scpsys_get_legacy_regmap_node() function, which acts similarly to of_find_node_with_property(), and calling the former in place of the latter. This resolves the following spinlock recursion issue: [ 1.773979] BUG: spinlock recursion on CPU#2, kworker/u24:1/60 [ 1.790485] lock: devtree_lock+0x0/0x40, .magic: dead4ead, .owner: kworker/u24:1/60, .owner_cpu: 2 [ 1.791644] CPU: 2 UID: 0 PID: 60 Comm: kworker/u24:1 Tainted: G W 6.18.0-rc6 #3 PREEMPT [ 1.791649] Tainted: [W]=WARN [ 1.791650] Hardware name: MediaTek Genio-510 EVK (DT) [ 1.791653] Workqueue: events_unbound deferred_probe_work_func [ 1.791658] Call trace: [ 1.791659] show_stack+0x18/0x30 (C) [ 1.791664] dump_stack_lvl+0x68/0x94 [ 1.791668] dump_stack+0x18/0x24 [ 1.791672] spin_dump+0x78/0x88 [ 1.791678] do_raw_spin_lock+0x110/0x140 [ 1.791684] _raw_spin_lock_irqsave+0x58/0x6c [ 1.791690] of_get_parent+0x28/0x74 [ 1.791694] of_fwnode_get_parent+0x38/0x7c [ 1.791700] fwnode_count_parents+0x34/0xf0 [ 1.791705] fwnode_full_name_string+0x28/0x120 [ 1.791710] device_node_string+0x3e4/0x50c [ 1.791715] pointer+0x294/0x430 [ 1.791718] vsnprintf+0x21c/0x5bc [ 1.791722] vprintk_store+0x108/0x47c [ 1.791728] vprintk_emit+0xc4/0x350 [ 1.791732] vprintk_default+0x34/0x40 [ 1.791736] vprintk+0x24/0x30 [ 1.791740] _printk+0x60/0x8c [ 1.791744] of_node_release+0x154/0x194 [ 1.791749] kobject_put+0xa0/0x120 [ 1.791753] of_node_put+0x18/0x28 [ 1.791756] of_find_node_with_property+0x74/0x100 [ 1.791761] scpsys_probe+0x338/0x5e0 [ 1.791765] platform_probe+0x5c/0xa4 [ 1.791770] really_probe+0xbc/0x2ac [ 1.791774] __driver_probe_device+0x78/0x118 [ 1.791779] driver_probe_device+0x3c/0x170 [ 1.791783] __device_attach_driver+0xb8/0x150 [ 1.791788] bus_for_each_drv+0x88/0xe8 [ 1.791792] __device_attach+0x9c/0x1a0 [ 1.791796] device_initial_probe+0x14/0x20 [ 1.791801] bus_probe_device+0xa0/0xa4 [ 1.791805] deferred_probe_work_func+0x88/0xd0 [ 1.791809] process_one_work+0x1e8/0x448 [ 1.791813] worker_thread+0x1ac/0x340 [ 1.791816] kthread+0x138/0x220 [ 1.791821] ret_from_fork+0x10/0x20 Fixes: c29345f ("pmdomain: mediatek: Refactor bus protection regmaps retrieval") Signed-off-by: AngeloGioacchino Del Regno <[email protected]> Tested-by: Louis-Alexis Eyraud <[email protected]> Tested-by: Macpaul Lin <[email protected]> Reviewed-by: Macpaul Lin <[email protected]> Signed-off-by: Ulf Hansson <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Dec 2, 2025
Marc Kleine-Budde <[email protected]> says: Similarly to how CAN FD reuses the bittiming logic of Classical CAN, CAN XL also reuses the entirety of CAN FD features, and, on top of that, adds new features which are specific to CAN XL. A so-called 'mixed-mode' is intended to have (XL-tolerant) CAN FD nodes and CAN XL nodes on one CAN segment, where the FD-controllers can talk CC/FD and the XL-controllers can talk CC/FD/XL. This mixed-mode utilizes the known error-signalling (ES) for sending CC/FD/XL frames. For CAN FD and CAN XL the tranceiver delay compensation (TDC) is supported to use common CAN and CAN-SIG transceivers. The CANXL-only mode disables the error-signalling in the CAN XL controller. This mode does not allow CC/FD frames to be sent but additionally offers a CAN XL transceiver mode switching (TMS) to send CAN XL frames with up to 20Mbit/s data rate. The TMS utilizes a PWM configuration which is added to the netlink interface. Configured with CAN_CTRLMODE_FD and CAN_CTRLMODE_XL this leads to: FD=0 XL=0 CC-only mode (ES=1) FD=1 XL=0 FD/CC mixed-mode (ES=1) FD=1 XL=1 XL/FD/CC mixed-mode (ES=1) FD=0 XL=1 XL-only mode (ES=0, TMS optional) Patch #1 print defined ctrlmode strings capitalized to increase the readability and to be in line with the 'ip' tool (iproute2). Patch #2 is a small clean-up which makes can_calc_bittiming() use NL_SET_ERR_MSG() instead of netdev_err(). Patch #3 adds a check in can_dev_dropped_skb() to drop CAN FD frames when CAN FD is turned off. Patch #4 adds CAN_CTRLMODE_RESTRICTED. Note that contrary to the other CAN_CTRL_MODE_XL_* that are introduced in the later patches, this control mode is not specific to CAN XL. The nuance is that because this restricted mode was only added in ISO 11898-1:2024, it is made mandatory for CAN XL devices but optional for other protocols. This is why this patch is added as a preparation before introducing the core CAN XL logic. Patch #5 adds all the CAN XL features which are inherited from CAN FD: the nominal bittiming, the data bittiming and the TDC. Patch torvalds#6 add a new CAN_CTRLMODE_XL_TMS control mode which is specific to CAN XL to enable the transceiver mode switching (TMS) in XL-only mode. Patch torvalds#7 adds a check in can_dev_dropped_skb() to drop CAN CC/FD frames when the CAN XL controller is in CAN XL-only mode. The introduced can_dev_in_xl_only_mode() function also determines the error-signalling configuration for the CAN XL controllers. Patch torvalds#8 to torvalds#11 add the PWM logic for the CAN XL TMS mode. Patch torvalds#12 to torvalds#14 add different default sample-points for standard CAN and CAN SIG transceivers (with TDC) and CAN XL transceivers using PWM in the CAN XL TMS mode. Patch torvalds#15 add a dummy_can driver for netlink testing and debugging. Patch torvalds#16 check CAN frame type (CC/FD/XL) when writing those frames to the CAN_RAW socket and reject them if it's not supported by the CAN interface. Patch torvalds#17 increase the resolution when printing the bitrate error and round-up the value to 0.01% in the case the resolution would still provide values which would lead to 0.00%. Link: https://patch.msgid.link/[email protected] Signed-off-by: Marc Kleine-Budde <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Dec 2, 2025
It's possible that the auxiliary proxy device we add when setting up the GPIO controller exposing shared pins, will get matched and probed immediately. The gpio-proxy-driver will then retrieve the shared descriptor structure. That will cause a recursive mutex locking and a deadlock because we're already holding the gpio_shared_lock in gpio_device_setup_shared() and try to take it again in devm_gpiod_shared_get() like this: [ 4.298346] gpiolib_shared: GPIO 130 owned by f100000.pinctrl is shared by multiple consumers [ 4.307157] gpiolib_shared: Setting up a shared GPIO entry for speaker@0,3 [ 4.314604] [ 4.316146] ============================================ [ 4.321600] WARNING: possible recursive locking detected [ 4.327054] 6.18.0-rc7-next-20251125-g3f300d0674f6-dirty #3887 Not tainted [ 4.334115] -------------------------------------------- [ 4.339566] kworker/u32:3/71 is trying to acquire lock: [ 4.344931] ffffda019ba71850 (gpio_shared_lock){+.+.}-{4:4}, at: devm_gpiod_shared_get+0x34/0x2e0 [ 4.354057] [ 4.354057] but task is already holding lock: [ 4.360041] ffffda019ba71850 (gpio_shared_lock){+.+.}-{4:4}, at: gpio_device_setup_shared+0x30/0x268 [ 4.369421] [ 4.369421] other info that might help us debug this: [ 4.376126] Possible unsafe locking scenario: [ 4.376126] [ 4.382198] CPU0 [ 4.384711] ---- [ 4.387223] lock(gpio_shared_lock); [ 4.390992] lock(gpio_shared_lock); [ 4.394761] [ 4.394761] *** DEADLOCK *** [ 4.394761] [ 4.400832] May be due to missing lock nesting notation [ 4.400832] [ 4.407802] 5 locks held by kworker/u32:3/71: [ 4.412279] #0: ffff000080020948 ((wq_completion)events_unbound){+.+.}-{0:0}, at: process_one_work+0x194/0x64c [ 4.422650] #1: ffff800080963d60 (deferred_probe_work){+.+.}-{0:0}, at: process_one_work+0x1bc/0x64c [ 4.432117] #2: ffff00008165c8f8 (&dev->mutex){....}-{4:4}, at: __device_attach+0x3c/0x198 [ 4.440700] #3: ffffda019ba71850 (gpio_shared_lock){+.+.}-{4:4}, at: gpio_device_setup_shared+0x30/0x268 [ 4.450523] #4: ffff0000810fe918 (&dev->mutex){....}-{4:4}, at: __device_attach+0x3c/0x198 [ 4.459103] [ 4.459103] stack backtrace: [ 4.463581] CPU: 6 UID: 0 PID: 71 Comm: kworker/u32:3 Not tainted 6.18.0-rc7-next-20251125-g3f300d0674f6-dirty #3887 PREEMPT [ 4.463589] Hardware name: Qualcomm Technologies, Inc. Robotics RB5 (DT) [ 4.463593] Workqueue: events_unbound deferred_probe_work_func [ 4.463602] Call trace: [ 4.463604] show_stack+0x18/0x24 (C) [ 4.463617] dump_stack_lvl+0x70/0x98 [ 4.463627] dump_stack+0x18/0x24 [ 4.463636] print_deadlock_bug+0x224/0x238 [ 4.463643] __lock_acquire+0xe4c/0x15f0 [ 4.463648] lock_acquire+0x1cc/0x344 [ 4.463653] __mutex_lock+0xb8/0x840 [ 4.463661] mutex_lock_nested+0x24/0x30 [ 4.463667] devm_gpiod_shared_get+0x34/0x2e0 [ 4.463674] gpio_shared_proxy_probe+0x18/0x138 [ 4.463682] auxiliary_bus_probe+0x40/0x78 [ 4.463688] really_probe+0xbc/0x2c0 [ 4.463694] __driver_probe_device+0x78/0x120 [ 4.463701] driver_probe_device+0x3c/0x160 [ 4.463708] __device_attach_driver+0xb8/0x140 [ 4.463716] bus_for_each_drv+0x88/0xe8 [ 4.463723] __device_attach+0xa0/0x198 [ 4.463729] device_initial_probe+0x14/0x20 [ 4.463737] bus_probe_device+0xb4/0xc0 [ 4.463743] device_add+0x578/0x76c [ 4.463747] __auxiliary_device_add+0x40/0xac [ 4.463752] gpio_device_setup_shared+0x1f8/0x268 [ 4.463758] gpiochip_add_data_with_key+0xdac/0x10ac [ 4.463763] devm_gpiochip_add_data_with_key+0x30/0x80 [ 4.463768] msm_pinctrl_probe+0x4b0/0x5e0 [ 4.463779] sm8250_pinctrl_probe+0x18/0x40 [ 4.463784] platform_probe+0x5c/0xa4 [ 4.463793] really_probe+0xbc/0x2c0 [ 4.463800] __driver_probe_device+0x78/0x120 [ 4.463807] driver_probe_device+0x3c/0x160 [ 4.463814] __device_attach_driver+0xb8/0x140 [ 4.463821] bus_for_each_drv+0x88/0xe8 [ 4.463827] __device_attach+0xa0/0x198 [ 4.463834] device_initial_probe+0x14/0x20 [ 4.463841] bus_probe_device+0xb4/0xc0 [ 4.463847] deferred_probe_work_func+0x90/0xcc [ 4.463854] process_one_work+0x214/0x64c [ 4.463860] worker_thread+0x1bc/0x360 [ 4.463866] kthread+0x14c/0x220 [ 4.463871] ret_from_fork+0x10/0x20 [ 77.265041] random: crng init done Fortunately, at the time of creating of the auxiliary device, we already know the correct entry so let's store it as the device's platform data. We don't need to hold gpio_shared_lock in devm_gpiod_shared_get() as we're not removing the entry or traversing the list anymore but we still need to protect it from concurrent modification of its fields so add a more fine-grained mutex. Fixes: a060b8c ("gpiolib: implement low-level, shared GPIO support") Reported-by: Dmitry Baryshkov <[email protected]> Closes: https://lore.kernel.org/all/fimuvblfy2cmn7o4wzcxjzrux5mwhvlvyxfsgeqs6ore2xg75i@ax46d3sfmdux/ Reviewed-by: Dmitry Baryshkov <[email protected]> Tested-by: Dmitry Baryshkov <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Bartosz Golaszewski <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Dec 3, 2025
…ockdep While developing IPPROTO_SMBDIRECT support for the code under fs/smb/common/smbdirect [1], I noticed false positives like this: [T79] ====================================================== [T79] WARNING: possible circular locking dependency detected [T79] 6.18.0-rc4-metze-kasan-lockdep.01+ #1 Tainted: G OE [T79] ------------------------------------------------------ [T79] kworker/2:0/79 is trying to acquire lock: [T79] ffff88801f968278 (sk_lock-AF_INET){+.+.}-{0:0}, at: sock_set_reuseaddr+0x14/0x70 [T79] but task is already holding lock: [T79] ffffffffc10f7230 (lock#9){+.+.}-{4:4}, at: rdma_listen+0x3d2/0x740 [rdma_cm] [T79] which lock already depends on the new lock. [T79] the existing dependency chain (in reverse order) is: [T79] -> #1 (lock#9){+.+.}-{4:4}: [T79] __lock_acquire+0x535/0xc30 [T79] lock_acquire.part.0+0xb3/0x240 [T79] lock_acquire+0x60/0x140 [T79] __mutex_lock+0x1af/0x1c10 [T79] mutex_lock_nested+0x1b/0x30 [T79] cma_get_port+0xba/0x7d0 [rdma_cm] [T79] rdma_bind_addr_dst+0x598/0x9a0 [rdma_cm] [T79] cma_bind_addr+0x107/0x320 [rdma_cm] [T79] rdma_resolve_addr+0xa3/0x830 [rdma_cm] [T79] destroy_lease_table+0x12b/0x420 [ksmbd] [T79] ksmbd_NTtimeToUnix+0x3e/0x80 [ksmbd] [T79] ndr_encode_posix_acl+0x6e9/0xab0 [ksmbd] [T79] ndr_encode_v4_ntacl+0x53/0x870 [ksmbd] [T79] __sys_connect_file+0x131/0x1c0 [T79] __sys_connect+0x111/0x140 [T79] __x64_sys_connect+0x72/0xc0 [T79] x64_sys_call+0xe7d/0x26a0 [T79] do_syscall_64+0x93/0xff0 [T79] entry_SYSCALL_64_after_hwframe+0x76/0x7e [T79] -> #0 (sk_lock-AF_INET){+.+.}-{0:0}: [T79] check_prev_add+0xf3/0xcd0 [T79] validate_chain+0x466/0x590 [T79] __lock_acquire+0x535/0xc30 [T79] lock_acquire.part.0+0xb3/0x240 [T79] lock_acquire+0x60/0x140 [T79] lock_sock_nested+0x3b/0xf0 [T79] sock_set_reuseaddr+0x14/0x70 [T79] siw_create_listen+0x145/0x1540 [siw] [T79] iw_cm_listen+0x313/0x5b0 [iw_cm] [T79] cma_iw_listen+0x271/0x3c0 [rdma_cm] [T79] rdma_listen+0x3b1/0x740 [rdma_cm] [T79] cma_listen_on_dev+0x46a/0x750 [rdma_cm] [T79] rdma_listen+0x4b0/0x740 [rdma_cm] [T79] ksmbd_rdma_init+0x12b/0x270 [ksmbd] [T79] ksmbd_conn_transport_init+0x26/0x70 [ksmbd] [T79] server_ctrl_handle_work+0x1e5/0x280 [ksmbd] [T79] process_one_work+0x86c/0x1930 [T79] worker_thread+0x6f0/0x11f0 [T79] kthread+0x3ec/0x8b0 [T79] ret_from_fork+0x314/0x400 [T79] ret_from_fork_asm+0x1a/0x30 [T79] other info that might help us debug this: [T79] Possible unsafe locking scenario: [T79] CPU0 CPU1 [T79] ---- ---- [T79] lock(lock#9); [T79] lock(sk_lock-AF_INET); [T79] lock(lock#9); [T79] lock(sk_lock-AF_INET); [T79] *** DEADLOCK *** [T79] 5 locks held by kworker/2:0/79: [T79] #0: ffff88800120b158 ((wq_completion)events_long){+.+.}-{0:0}, at: process_one_work+0xfca/0x1930 [T79] #1: ffffc9000474fd00 ((work_completion)(&ctrl->ctrl_work)) {+.+.}-{0:0}, at: process_one_work+0x804/0x1930 [T79] #2: ffffffffc11307d0 (ctrl_lock){+.+.}-{4:4}, at: server_ctrl_handle_work+0x21/0x280 [ksmbd] [T79] #3: ffffffffc11347b0 (init_lock){+.+.}-{4:4}, at: ksmbd_conn_transport_init+0x18/0x70 [ksmbd] [T79] #4: ffffffffc10f7230 (lock#9){+.+.}-{4:4}, at: rdma_listen+0x3d2/0x740 [rdma_cm] [T79] stack backtrace: [T79] CPU: 2 UID: 0 PID: 79 Comm: kworker/2:0 Kdump: loaded Tainted: G OE 6.18.0-rc4-metze-kasan-lockdep.01+ #1 PREEMPT(voluntary) [T79] Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE [T79] Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006 [T79] Workqueue: events_long server_ctrl_handle_work [ksmbd] ... [T79] print_circular_bug+0xfd/0x130 [T79] check_noncircular+0x150/0x170 [T79] check_prev_add+0xf3/0xcd0 [T79] validate_chain+0x466/0x590 [T79] __lock_acquire+0x535/0xc30 [T79] ? srso_alias_return_thunk+0x5/0xfbef5 [T79] lock_acquire.part.0+0xb3/0x240 [T79] ? sock_set_reuseaddr+0x14/0x70 [T79] ? srso_alias_return_thunk+0x5/0xfbef5 [T79] ? __kasan_check_write+0x14/0x30 [T79] ? srso_alias_return_thunk+0x5/0xfbef5 [T79] ? apparmor_socket_post_create+0x180/0x700 [T79] lock_acquire+0x60/0x140 [T79] ? sock_set_reuseaddr+0x14/0x70 [T79] lock_sock_nested+0x3b/0xf0 [T79] ? sock_set_reuseaddr+0x14/0x70 [T79] sock_set_reuseaddr+0x14/0x70 [T79] siw_create_listen+0x145/0x1540 [siw] [T79] ? srso_alias_return_thunk+0x5/0xfbef5 [T79] ? local_clock_noinstr+0xe/0xd0 [T79] ? __pfx_siw_create_listen+0x10/0x10 [siw] [T79] ? trace_preempt_on+0x4c/0x130 [T79] ? __raw_spin_unlock_irqrestore+0x4a/0x90 [T79] ? srso_alias_return_thunk+0x5/0xfbef5 [T79] ? preempt_count_sub+0x52/0x80 [T79] iw_cm_listen+0x313/0x5b0 [iw_cm] [T79] cma_iw_listen+0x271/0x3c0 [rdma_cm] [T79] ? srso_alias_return_thunk+0x5/0xfbef5 [T79] rdma_listen+0x3b1/0x740 [rdma_cm] [T79] ? _raw_spin_unlock+0x2c/0x60 [T79] ? __pfx_rdma_listen+0x10/0x10 [rdma_cm] [T79] ? rdma_restrack_add+0x12c/0x630 [ib_core] [T79] ? srso_alias_return_thunk+0x5/0xfbef5 [T79] cma_listen_on_dev+0x46a/0x750 [rdma_cm] [T79] rdma_listen+0x4b0/0x740 [rdma_cm] [T79] ? __pfx_rdma_listen+0x10/0x10 [rdma_cm] [T79] ? cma_get_port+0x30d/0x7d0 [rdma_cm] [T79] ? srso_alias_return_thunk+0x5/0xfbef5 [T79] ? rdma_bind_addr_dst+0x598/0x9a0 [rdma_cm] [T79] ksmbd_rdma_init+0x12b/0x270 [ksmbd] [T79] ? __pfx_ksmbd_rdma_init+0x10/0x10 [ksmbd] [T79] ? srso_alias_return_thunk+0x5/0xfbef5 [T79] ? srso_alias_return_thunk+0x5/0xfbef5 [T79] ? register_netdevice_notifier+0x1dc/0x240 [T79] ksmbd_conn_transport_init+0x26/0x70 [ksmbd] [T79] server_ctrl_handle_work+0x1e5/0x280 [ksmbd] [T79] process_one_work+0x86c/0x1930 [T79] ? __pfx_process_one_work+0x10/0x10 [T79] ? srso_alias_return_thunk+0x5/0xfbef5 [T79] ? assign_work+0x16f/0x280 [T79] worker_thread+0x6f0/0x11f0 I was not able to reproduce this as I was testing with various runs switching siw and rxe as well as IPPROTO_SMBDIRECT sockets, while the above stack used siw with the non IPPROTO_SMBDIRECT patches [1]. Even if this patch doesn't solve the above I think it's a good idea to reclassify the sockets used by siw, I also send patches for rxe to reclassify, as well as my IPPROTO_SMBDIRECT socket patches [1] will do it, this should minimize potential false positives. [1] https://git.samba.org/?p=metze/linux/wip.git;a=shortlog;h=refs/heads/master-ipproto-smbdirect Cc: Bernard Metzler <[email protected]> Cc: Jason Gunthorpe <[email protected]> Cc: Leon Romanovsky <[email protected]> Cc: [email protected] Cc: [email protected] Cc: [email protected] Signed-off-by: Stefan Metzmacher <[email protected]> Link: https://patch.msgid.link/[email protected] Acked-by: Bernard Metzler <[email protected]> Signed-off-by: Leon Romanovsky <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Dec 3, 2025
Reject attempts to disable KVM_MEM_GUEST_MEMFD on a memslot that was initially created with a guest_memfd binding, as KVM doesn't support toggling KVM_MEM_GUEST_MEMFD on existing memslots. KVM prevents enabling KVM_MEM_GUEST_MEMFD, but doesn't prevent clearing the flag. Failure to reject the new memslot results in a use-after-free due to KVM not unbinding from the guest_memfd instance. Unbinding on a FLAGS_ONLY change is easy enough, and can/will be done as a hardening measure (in anticipation of KVM supporting dirty logging on guest_memfd at some point), but fixing the use-after-free would only address the immediate symptom. ================================================================== BUG: KASAN: slab-use-after-free in kvm_gmem_release+0x362/0x400 [kvm] Write of size 8 at addr ffff8881111ae908 by task repro/745 CPU: 7 UID: 1000 PID: 745 Comm: repro Not tainted 6.18.0-rc6-115d5de2eef3-next-kasan #3 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Call Trace: <TASK> dump_stack_lvl+0x51/0x60 print_report+0xcb/0x5c0 kasan_report+0xb4/0xe0 kvm_gmem_release+0x362/0x400 [kvm] __fput+0x2fa/0x9d0 task_work_run+0x12c/0x200 do_exit+0x6ae/0x2100 do_group_exit+0xa8/0x230 __x64_sys_exit_group+0x3a/0x50 x64_sys_call+0x737/0x740 do_syscall_64+0x5b/0x900 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7f581f2eac31 </TASK> Allocated by task 745 on cpu 6 at 9.746971s: kasan_save_stack+0x20/0x40 kasan_save_track+0x13/0x50 __kasan_kmalloc+0x77/0x90 kvm_set_memory_region.part.0+0x652/0x1110 [kvm] kvm_vm_ioctl+0x14b0/0x3290 [kvm] __x64_sys_ioctl+0x129/0x1a0 do_syscall_64+0x5b/0x900 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Freed by task 745 on cpu 6 at 9.747467s: kasan_save_stack+0x20/0x40 kasan_save_track+0x13/0x50 __kasan_save_free_info+0x37/0x50 __kasan_slab_free+0x3b/0x60 kfree+0xf5/0x440 kvm_set_memslot+0x3c2/0x1160 [kvm] kvm_set_memory_region.part.0+0x86a/0x1110 [kvm] kvm_vm_ioctl+0x14b0/0x3290 [kvm] __x64_sys_ioctl+0x129/0x1a0 do_syscall_64+0x5b/0x900 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Reported-by: Alexander Potapenko <[email protected]> Fixes: a7800aa ("KVM: Add KVM_CREATE_GUEST_MEMFD ioctl() for guest-specific backing memory") Cc: [email protected] Link: https://patch.msgid.link/[email protected] Signed-off-by: Sean Christopherson <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Dec 7, 2025
When interrupting perf stat in repeat mode with a signal the signal is passed to the child process but the repeat doesn't terminate: ``` $ perf stat -v --null --repeat 10 sleep 1 Control descriptor is not initialized [ perf stat: executing run #1 ... ] [ perf stat: executing run #2 ... ] ^Csleep: Interrupt [ perf stat: executing run #3 ... ] [ perf stat: executing run #4 ... ] [ perf stat: executing run #5 ... ] [ perf stat: executing run torvalds#6 ... ] [ perf stat: executing run torvalds#7 ... ] [ perf stat: executing run torvalds#8 ... ] [ perf stat: executing run torvalds#9 ... ] [ perf stat: executing run torvalds#10 ... ] Performance counter stats for 'sleep 1' (10 runs): 0.9500 +- 0.0512 seconds time elapsed ( +- 5.39% ) 0.01user 0.02system 0:09.53elapsed 0%CPU (0avgtext+0avgdata 18940maxresident)k 29944inputs+0outputs (0major+2629minor)pagefaults 0swaps ``` Terminate the repeated run and give a reasonable exit value: ``` $ perf stat -v --null --repeat 10 sleep 1 Control descriptor is not initialized [ perf stat: executing run #1 ... ] [ perf stat: executing run #2 ... ] [ perf stat: executing run #3 ... ] ^Csleep: Interrupt Performance counter stats for 'sleep 1' (10 runs): 0.680 +- 0.321 seconds time elapsed ( +- 47.16% ) Command exited with non-zero status 130 0.00user 0.01system 0:02.05elapsed 0%CPU (0avgtext+0avgdata 70688maxresident)k 0inputs+0outputs (0major+5002minor)pagefaults 0swaps ``` Note, this also changes the exit value for non-repeat runs when interrupted by a signal. Reported-by: Ingo Molnar <[email protected]> Closes: https://lore.kernel.org/lkml/[email protected]/ Signed-off-by: Ian Rogers <[email protected]> Tested-by: Thomas Richter <[email protected]> Signed-off-by: Namhyung Kim <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Dec 8, 2025
We sometimes observe use-after-free when dereferencing a neighbour [1]. The problem seems to be that the driver stores a pointer to the neighbour, but without holding a reference on it. A reference is only taken when the neighbour is used by a nexthop. Fix by simplifying the reference counting scheme. Always take a reference when storing a neighbour pointer in a neighbour entry. Avoid taking a referencing when the neighbour is used by a nexthop as the neighbour entry associated with the nexthop already holds a reference. Tested by running the test that uncovered the problem over 300 times. Without this patch the problem was reproduced after a handful of iterations. [1] BUG: KASAN: slab-use-after-free in mlxsw_sp_neigh_entry_update+0x2d4/0x310 Read of size 8 at addr ffff88817f8e3420 by task ip/3929 CPU: 3 UID: 0 PID: 3929 Comm: ip Not tainted 6.18.0-rc4-virtme-g36b21a067510 #3 PREEMPT(full) Hardware name: Nvidia SN5600/VMOD0013, BIOS 5.13 05/31/2023 Call Trace: <TASK> dump_stack_lvl+0x6f/0xa0 print_address_description.constprop.0+0x6e/0x300 print_report+0xfc/0x1fb kasan_report+0xe4/0x110 mlxsw_sp_neigh_entry_update+0x2d4/0x310 mlxsw_sp_router_rif_gone_sync+0x35f/0x510 mlxsw_sp_rif_destroy+0x1ea/0x730 mlxsw_sp_inetaddr_port_vlan_event+0xa1/0x1b0 __mlxsw_sp_inetaddr_lag_event+0xcc/0x130 __mlxsw_sp_inetaddr_event+0xf5/0x3c0 mlxsw_sp_router_netdevice_event+0x1015/0x1580 notifier_call_chain+0xcc/0x150 call_netdevice_notifiers_info+0x7e/0x100 __netdev_upper_dev_unlink+0x10b/0x210 netdev_upper_dev_unlink+0x79/0xa0 vrf_del_slave+0x18/0x50 do_set_master+0x146/0x7d0 do_setlink.isra.0+0x9a0/0x2880 rtnl_newlink+0x637/0xb20 rtnetlink_rcv_msg+0x6fe/0xb90 netlink_rcv_skb+0x123/0x380 netlink_unicast+0x4a3/0x770 netlink_sendmsg+0x75b/0xc90 __sock_sendmsg+0xbe/0x160 ____sys_sendmsg+0x5b2/0x7d0 ___sys_sendmsg+0xfd/0x180 __sys_sendmsg+0x124/0x1c0 do_syscall_64+0xbb/0xfd0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 [...] Allocated by task 109: kasan_save_stack+0x30/0x50 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x7b/0x90 __kmalloc_noprof+0x2c1/0x790 neigh_alloc+0x6af/0x8f0 ___neigh_create+0x63/0xe90 mlxsw_sp_nexthop_neigh_init+0x430/0x7e0 mlxsw_sp_nexthop_type_init+0x212/0x960 mlxsw_sp_nexthop6_group_info_init.constprop.0+0x81f/0x1280 mlxsw_sp_nexthop6_group_get+0x392/0x6a0 mlxsw_sp_fib6_entry_create+0x46a/0xfd0 mlxsw_sp_router_fib6_replace+0x1ed/0x5f0 mlxsw_sp_router_fib6_event_work+0x10a/0x2a0 process_one_work+0xd57/0x1390 worker_thread+0x4d6/0xd40 kthread+0x355/0x5b0 ret_from_fork+0x1d4/0x270 ret_from_fork_asm+0x11/0x20 Freed by task 154: kasan_save_stack+0x30/0x50 kasan_save_track+0x14/0x30 __kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x43/0x70 kmem_cache_free_bulk.part.0+0x1eb/0x5e0 kvfree_rcu_bulk+0x1f2/0x260 kfree_rcu_work+0x130/0x1b0 process_one_work+0xd57/0x1390 worker_thread+0x4d6/0xd40 kthread+0x355/0x5b0 ret_from_fork+0x1d4/0x270 ret_from_fork_asm+0x11/0x20 Last potentially related work creation: kasan_save_stack+0x30/0x50 kasan_record_aux_stack+0x8c/0xa0 kvfree_call_rcu+0x93/0x5b0 mlxsw_sp_router_neigh_event_work+0x67d/0x860 process_one_work+0xd57/0x1390 worker_thread+0x4d6/0xd40 kthread+0x355/0x5b0 ret_from_fork+0x1d4/0x270 ret_from_fork_asm+0x11/0x20 Fixes: 6cf3c97 ("mlxsw: spectrum_router: Add private neigh table") Signed-off-by: Ido Schimmel <[email protected]> Reviewed-by: Petr Machata <[email protected]> Signed-off-by: Petr Machata <[email protected]> Reviewed-by: Simon Horman <[email protected]> Link: https://patch.msgid.link/92d75e21d95d163a41b5cea67a15cd33f547cba6.1764695650.git.petrm@nvidia.com Signed-off-by: Jakub Kicinski <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Dec 8, 2025
Patch series "mm/hugetlb: fixes for PMD table sharing (incl. using mmu_gather)". One functional fix, one performance regression fix, and two related comment fixes. I cleaned up my prototype I recently shared [1] for the performance fix, deferring most of the cleanups I had in the prototype to a later point. While doing that I identified the other things. The goal of this patch set is to be backported to stable trees "fairly" easily. At least patch #1 and #4. Patch #1 fixes hugetlb_pmd_shared() not detecting any sharing Patch #2 + #3 are simple comment fixes that patch #4 interacts with. Patch #4 is a fix for the reported performance regression due to excessive IPI broadcasts during fork()+exit(). The last patch is all about TLB flushes, IPIs and mmu_gather. Read: complicated I added as much comments + description that I possibly could, and I am hoping for review from Jann. There are plenty of cleanups in the future to be had + one reasonable optimization on x86. But that's all out of scope for this series. This patch (of 4): We switched from (wrongly) using the page count to an independent shared count. Now, shared page tables have a refcount of 1 (excluding speculative references) and instead use ptdesc->pt_share_count to identify sharing. We didn't convert hugetlb_pmd_shared(), so right now, we would never detect a shared PMD table as such, because sharing/unsharing no longer touches the refcount of a PMD table. Page migration, like mbind() or migrate_pages() would allow for migrating folios mapped into such shared PMD tables, even though the folios are not exclusive. In smaps we would account them as "private" although they are "shared", and we would be wrongly setting the PM_MMAP_EXCLUSIVE in the pagemap interface. Fix it by properly using ptdesc_pmd_is_shared() in hugetlb_pmd_shared(). Link: https://lkml.kernel.org/r/[email protected] Link: https://lkml.kernel.org/r/[email protected] Link: https://lore.kernel.org/all/[email protected]/ [1] Fixes: 59d9094 ("mm: hugetlb: independent PMD page table shared count") Signed-off-by: David Hildenbrand (Red Hat) <[email protected]> Tested-by: Laurence Oberman <[email protected]> Reviewed-by: Rik van Riel <[email protected]> Reviewed-by: Lance Yang <[email protected]> Cc: Liu Shixin <[email protected]> Cc: "Aneesh Kumar K.V" <[email protected]> Cc: Arnd Bergmann <[email protected]> Cc: Jann Horn <[email protected]> Cc: Liam Howlett <[email protected]> Cc: Lorenzo Stoakes <[email protected]> Cc: Muchun Song <[email protected]> Cc: Nadav Amit <[email protected]> Cc: Nicholas Piggin <[email protected]> Cc: Oscar Salvador <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Prakash Sangappa <[email protected]> Cc: Vlastimil Babka <[email protected]> Cc: Will Deacon <[email protected]> Cc: Uschakow, Stanislav" <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Dec 11, 2025
Patch series "mm/hugetlb: fixes for PMD table sharing (incl. using mmu_gather)". One functional fix, one performance regression fix, and two related comment fixes. I cleaned up my prototype I recently shared [1] for the performance fix, deferring most of the cleanups I had in the prototype to a later point. While doing that I identified the other things. The goal of this patch set is to be backported to stable trees "fairly" easily. At least patch #1 and #4. Patch #1 fixes hugetlb_pmd_shared() not detecting any sharing Patch #2 + #3 are simple comment fixes that patch #4 interacts with. Patch #4 is a fix for the reported performance regression due to excessive IPI broadcasts during fork()+exit(). The last patch is all about TLB flushes, IPIs and mmu_gather. Read: complicated I added as much comments + description that I possibly could, and I am hoping for review from Jann. There are plenty of cleanups in the future to be had + one reasonable optimization on x86. But that's all out of scope for this series. This patch (of 4): We switched from (wrongly) using the page count to an independent shared count. Now, shared page tables have a refcount of 1 (excluding speculative references) and instead use ptdesc->pt_share_count to identify sharing. We didn't convert hugetlb_pmd_shared(), so right now, we would never detect a shared PMD table as such, because sharing/unsharing no longer touches the refcount of a PMD table. Page migration, like mbind() or migrate_pages() would allow for migrating folios mapped into such shared PMD tables, even though the folios are not exclusive. In smaps we would account them as "private" although they are "shared", and we would be wrongly setting the PM_MMAP_EXCLUSIVE in the pagemap interface. Fix it by properly using ptdesc_pmd_is_shared() in hugetlb_pmd_shared(). Link: https://lkml.kernel.org/r/[email protected] Link: https://lkml.kernel.org/r/[email protected] Link: https://lore.kernel.org/all/[email protected]/ [1] Fixes: 59d9094 ("mm: hugetlb: independent PMD page table shared count") Signed-off-by: David Hildenbrand (Red Hat) <[email protected]> Tested-by: Laurence Oberman <[email protected]> Reviewed-by: Rik van Riel <[email protected]> Reviewed-by: Lance Yang <[email protected]> Cc: Liu Shixin <[email protected]> Cc: "Aneesh Kumar K.V" <[email protected]> Cc: Arnd Bergmann <[email protected]> Cc: Jann Horn <[email protected]> Cc: Liam Howlett <[email protected]> Cc: Lorenzo Stoakes <[email protected]> Cc: Muchun Song <[email protected]> Cc: Nadav Amit <[email protected]> Cc: Nicholas Piggin <[email protected]> Cc: Oscar Salvador <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Prakash Sangappa <[email protected]> Cc: Vlastimil Babka <[email protected]> Cc: Will Deacon <[email protected]> Cc: Uschakow, Stanislav" <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Dec 12, 2025
Petr Machata says: ==================== selftests: forwarding: vxlan_bridge_1q_mc_ul: Fix flakiness The net/forwarding/vxlan_bridge_1q_mc_ul selftest runs an overlay traffic, forwarded over a multicast-routed VXLAN underlay. In order to determine whether packets reach their intended destination, it uses a TC match. For convenience, it uses a flower match, which however does not allow matching on the encapsulated packet. So various service traffic ends up being indistinguishable from the test packets, and ends up confusing the test. To alleviate the problem, the test uses sleep to allow the necessary service traffic to run and clear the channel, before running the test traffic. This worked for a while, but lately we have nevertheless seen flakiness of the test in the CI. In this patchset, first generalize tc_rule_stats_get() to support u32 in patch #1, then in patch #2 convert the test to use u32 to allow parsing deeper into the packet, and in #3 drop the now-unnecessary sleep. ==================== Link: https://patch.msgid.link/[email protected] Signed-off-by: Jakub Kicinski <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Dec 12, 2025
Patch series "mm/hugetlb: fixes for PMD table sharing (incl. using mmu_gather)". One functional fix, one performance regression fix, and two related comment fixes. I cleaned up my prototype I recently shared [1] for the performance fix, deferring most of the cleanups I had in the prototype to a later point. While doing that I identified the other things. The goal of this patch set is to be backported to stable trees "fairly" easily. At least patch #1 and #4. Patch #1 fixes hugetlb_pmd_shared() not detecting any sharing Patch #2 + #3 are simple comment fixes that patch #4 interacts with. Patch #4 is a fix for the reported performance regression due to excessive IPI broadcasts during fork()+exit(). The last patch is all about TLB flushes, IPIs and mmu_gather. Read: complicated I added as much comments + description that I possibly could, and I am hoping for review from Jann. There are plenty of cleanups in the future to be had + one reasonable optimization on x86. But that's all out of scope for this series. This patch (of 4): We switched from (wrongly) using the page count to an independent shared count. Now, shared page tables have a refcount of 1 (excluding speculative references) and instead use ptdesc->pt_share_count to identify sharing. We didn't convert hugetlb_pmd_shared(), so right now, we would never detect a shared PMD table as such, because sharing/unsharing no longer touches the refcount of a PMD table. Page migration, like mbind() or migrate_pages() would allow for migrating folios mapped into such shared PMD tables, even though the folios are not exclusive. In smaps we would account them as "private" although they are "shared", and we would be wrongly setting the PM_MMAP_EXCLUSIVE in the pagemap interface. Fix it by properly using ptdesc_pmd_is_shared() in hugetlb_pmd_shared(). Link: https://lkml.kernel.org/r/[email protected] Link: https://lkml.kernel.org/r/[email protected] Link: https://lore.kernel.org/all/[email protected]/ [1] Fixes: 59d9094 ("mm: hugetlb: independent PMD page table shared count") Signed-off-by: David Hildenbrand (Red Hat) <[email protected]> Tested-by: Laurence Oberman <[email protected]> Reviewed-by: Rik van Riel <[email protected]> Reviewed-by: Lance Yang <[email protected]> Cc: Liu Shixin <[email protected]> Cc: "Aneesh Kumar K.V" <[email protected]> Cc: Arnd Bergmann <[email protected]> Cc: Jann Horn <[email protected]> Cc: Liam Howlett <[email protected]> Cc: Lorenzo Stoakes <[email protected]> Cc: Muchun Song <[email protected]> Cc: Nadav Amit <[email protected]> Cc: Nicholas Piggin <[email protected]> Cc: Oscar Salvador <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Prakash Sangappa <[email protected]> Cc: Vlastimil Babka <[email protected]> Cc: Will Deacon <[email protected]> Cc: Uschakow, Stanislav" <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
akiyks
pushed a commit
that referenced
this pull request
Dec 19, 2025
Fix a loop scenario of ethx:egress->ethx:egress
Example setup to reproduce:
tc qdisc add dev ethx root handle 1: drr
tc filter add dev ethx parent 1: protocol ip prio 1 matchall \
action mirred egress redirect dev ethx
Now ping out of ethx and you get a deadlock:
[ 116.892898][ T307] ============================================
[ 116.893182][ T307] WARNING: possible recursive locking detected
[ 116.893418][ T307] 6.18.0-rc6-01205-ge05021a829b8-dirty torvalds#204 Not tainted
[ 116.893682][ T307] --------------------------------------------
[ 116.893926][ T307] ping/307 is trying to acquire lock:
[ 116.894133][ T307] ffff88800c122908 (&sch->root_lock_key){+...}-{3:3}, at: __dev_queue_xmit+0x2210/0x3b50
[ 116.894517][ T307]
[ 116.894517][ T307] but task is already holding lock:
[ 116.894836][ T307] ffff88800c122908 (&sch->root_lock_key){+...}-{3:3}, at: __dev_queue_xmit+0x2210/0x3b50
[ 116.895252][ T307]
[ 116.895252][ T307] other info that might help us debug this:
[ 116.895608][ T307] Possible unsafe locking scenario:
[ 116.895608][ T307]
[ 116.895901][ T307] CPU0
[ 116.896057][ T307] ----
[ 116.896200][ T307] lock(&sch->root_lock_key);
[ 116.896392][ T307] lock(&sch->root_lock_key);
[ 116.896605][ T307]
[ 116.896605][ T307] *** DEADLOCK ***
[ 116.896605][ T307]
[ 116.896864][ T307] May be due to missing lock nesting notation
[ 116.896864][ T307]
[ 116.897123][ T307] 6 locks held by ping/307:
[ 116.897302][ T307] #0: ffff88800b4b0250 (sk_lock-AF_INET){+.+.}-{0:0}, at: raw_sendmsg+0xb20/0x2cf0
[ 116.897808][ T307] #1: ffffffff88c839c0 (rcu_read_lock){....}-{1:3}, at: ip_output+0xa9/0x600
[ 116.898138][ T307] #2: ffffffff88c839c0 (rcu_read_lock){....}-{1:3}, at: ip_finish_output2+0x2c6/0x1ee0
[ 116.898459][ T307] #3: ffffffff88c83960 (rcu_read_lock_bh){....}-{1:3}, at: __dev_queue_xmit+0x200/0x3b50
[ 116.898782][ T307] #4: ffff88800c122908 (&sch->root_lock_key){+...}-{3:3}, at: __dev_queue_xmit+0x2210/0x3b50
[ 116.899132][ T307] #5: ffffffff88c83960 (rcu_read_lock_bh){....}-{1:3}, at: __dev_queue_xmit+0x200/0x3b50
[ 116.899442][ T307]
[ 116.899442][ T307] stack backtrace:
[ 116.899667][ T307] CPU: 2 UID: 0 PID: 307 Comm: ping Not tainted 6.18.0-rc6-01205-ge05021a829b8-dirty torvalds#204 PREEMPT(voluntary)
[ 116.899672][ T307] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
[ 116.899675][ T307] Call Trace:
[ 116.899678][ T307] <TASK>
[ 116.899680][ T307] dump_stack_lvl+0x6f/0xb0
[ 116.899688][ T307] print_deadlock_bug.cold+0xc0/0xdc
[ 116.899695][ T307] __lock_acquire+0x11f7/0x1be0
[ 116.899704][ T307] lock_acquire+0x162/0x300
[ 116.899707][ T307] ? __dev_queue_xmit+0x2210/0x3b50
[ 116.899713][ T307] ? srso_alias_return_thunk+0x5/0xfbef5
[ 116.899717][ T307] ? stack_trace_save+0x93/0xd0
[ 116.899723][ T307] _raw_spin_lock+0x30/0x40
[ 116.899728][ T307] ? __dev_queue_xmit+0x2210/0x3b50
[ 116.899731][ T307] __dev_queue_xmit+0x2210/0x3b50
Fixes: 178ca30 ("Revert "net/sched: Fix mirred deadlock on device recursion"")
Tested-by: Victor Nogueira <[email protected]>
Signed-off-by: Jamal Hadi Salim <[email protected]>
Link: https://patch.msgid.link/[email protected]
Signed-off-by: Paolo Abeni <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This commit adds touchscreen support for "BUSH" - "Bush Windows tablet". If it is possible please merge...