This is a simple content-based movie recommender system built using Python, Pandas, and Streamlit. It suggests similar movies based on selected titles using cosine similarity over movie metadata.
- Recommends movies based on content similarity
- Uses TMDB 5000 movies dataset
- Built with an interactive Streamlit UI
- No external API (posters not fetched to keep it simple)
Movie_Recommender_System
├── app.py # Streamlit application
├── MovieRecommenderSystem.ipynb # Jupyter notebook (initial work)
├── movies.pkl # Preprocessed movie data using Count Vectorizer
├── similarity_matrix.pkl
├── tmdb_5000_credits.csv # Dataset - movie credits
├── tmdb_5000_movies.csv # Dataset - movies
├── requirements.txt # Required Python packages
├── README.md # Project documentation
- Clone the repo:
git clone https://github.com/amanjuneja420/movie-recommender-system.git
cd movie-recommender-system
2.Install dependencies:
pip install -r requirements.txt
3.Run Streamlit:
streamlit run app.py
DATASET used:
https://www.kaggle.com/datasets/tmdb/tmdb-movie-metadata?select=tmdb_5000_credits.csv
https://www.kaggle.com/datasets/tmdb/tmdb-movie-metadata?select=tmdb_5000_movies.csv