Skip to content

Add example notebook for SageMaker JumpStart #281

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Feb 17, 2025
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 12 additions & 6 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,15 +9,19 @@
[![preprint](https://img.shields.io/static/v1?label=arXiv&message=2403.07815&color=B31B1B&logo=arXiv)](https://arxiv.org/abs/2403.07815)
[![huggingface](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Datasets-FFD21E)](https://huggingface.co/datasets/autogluon/chronos_datasets)
[![huggingface](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-FFD21E)](https://huggingface.co/collections/amazon/chronos-models-65f1791d630a8d57cb718444)
[![fev](https://img.shields.io/static/v1?label=fev&message=Benchmark&color=B31B1B&logo=github)](https://github.com/autogluon/fev)
[![aws](https://img.shields.io/static/v1?label=SageMaker&message=Deploy&color=FF9900&logo=amazon-web-services)](notebooks/deploy-chronos-bolt-to-amazon-sagemaker.ipynb)
[![faq](https://img.shields.io/badge/FAQ-Questions%3F-blue)](https://github.com/amazon-science/chronos-forecasting/issues?q=is%3Aissue+label%3AFAQ)
[![License: MIT](https://img.shields.io/badge/License-Apache--2.0-green.svg)](https://opensource.org/licenses/Apache-2.0)

</div>

## 🚀 News

- **26 Nov 2024**: ⚡️ Chronos-Bolt models released [on HuggingFace](https://huggingface.co/collections/amazon/chronos-models-65f1791d630a8d57cb718444). Chronos-Bolt models are more accurate (5% lower error), up to 250x faster and 20x more memory efficient than the original Chronos models of the same size!
- **27 Jun 2024**: 🚀 [Released datasets](https://huggingface.co/datasets/autogluon/chronos_datasets) used in the paper and an [evaluation script](./scripts/README.md#evaluating-chronos-models) to compute the WQL and MASE scores reported in the paper.
## 🚀 News
- **14 Feb 2024**: 🚀 Chronos-Bolt is now available on Amazon SageMaker JumpStart! Check out the [tutorial notebook](notebooks/deploy-chronos-bolt-to-amazon-sagemaker.ipynb) to learn how to deploy Chronos endpoints for production use in 3 lines of code.
- **12 Dec 2024**: 📊 We released [`fev`](https://github.com/autogluon/fev), a lightweight package for benchmarking time series forecasting models based on the [Hugging Face `datasets`](https://huggingface.co/docs/datasets/en/index) library.
- **26 Nov 2024**: ⚡️ Chronos-Bolt models released [on HuggingFace](https://huggingface.co/collections/amazon/chronos-models-65f1791d630a8d57cb718444). Chronos-Bolt models are more accurate (5% lower error), up to 250x faster and 20x more memory efficient than the original Chronos models of the same size!
- **27 Jun 2024**: 🚀 [Released datasets](https://huggingface.co/datasets/autogluon/chronos_datasets) used in the paper and an [evaluation script](./scripts/README.md#evaluating-chronos-models) to compute the WQL and MASE scores reported in the paper.
- **17 May 2024**: 🐛 Fixed an off-by-one error in bin indices in the `output_transform`. This simple fix significantly improves the overall performance of Chronos. We will update the results in the next revision on ArXiv.
- **10 May 2024**: 🚀 We added the code for pretraining and fine-tuning Chronos models. You can find it in [this folder](./scripts/training). We also added [a script](./scripts/kernel-synth.py) for generating synthetic time series data from Gaussian processes (KernelSynth; see Section 4.2 in the paper for details). Check out the [usage examples](./scripts/).
- **19 Apr 2024**: 🚀 Chronos is now supported on [AutoGluon-TimeSeries](https://auto.gluon.ai/stable/tutorials/timeseries/index.html), the powerful AutoML package for time series forecasting which enables model ensembles, cloud deployments, and much more. Get started with the [tutorial](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-chronos.html).
Expand Down Expand Up @@ -61,7 +65,7 @@ The models in this repository are based on the [T5 architecture](https://arxiv.o

### Zero-Shot Results

The following figure showcases the remarkable **zero-shot** performance of Chronos and Chronos-Bolt models on 27 datasets against local models, task-specific models and other pretrained models. For details on the evaluation setup and other results, please refer to [the paper](https://arxiv.org/abs/2403.07815).
The following figure showcases the remarkable **zero-shot** performance of Chronos and Chronos-Bolt models on 27 datasets against local models, task-specific models and other pretrained models. For details on the evaluation setup and other results, please refer to [the paper](https://arxiv.org/abs/2403.07815).

<p align="center">
<img src="https://raw.githubusercontent.com/amazon-science/chronos-forecasting/main/figures/zero_shot-agg_scaled_score.svg" width="100%">
Expand Down Expand Up @@ -89,8 +93,10 @@ git clone https://github.com/amazon-science/chronos-forecasting.git
cd chronos-forecasting && pip install --editable ".[training]"
```

> [!TIP]
> This repository is intended for research purposes and provides a minimal interface to Chronos models. The recommended way of using Chronos for production use cases is through [AutoGluon](https://auto.gluon.ai), which features effortless fine-tuning, augmenting Chronos models with exogenous information through covariate regressors, ensembling with other statistical and machine learning models, as well as seamless deployments on AWS with SageMaker 🧠. Check out the AutoGluon Chronos [tutorial](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-chronos.html).
> [!TIP]
> This repository is intended for research purposes and provides a minimal interface to Chronos models. For reliable production use, we recommend the following options:
> - [AutoGluon](https://auto.gluon.ai) provides effortless fine-tuning, augmenting Chronos models with exogenous information through covariate regressors, ensembling with other statistical and machine learning models. Check out the AutoGluon Chronos [tutorial](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-chronos.html).
> - SageMaker JumpStart makes it easy to deploy Chronos inference endpoints to AWS with just a few lines of code. Check out [this tutorial](notebooks/deploy-chronos-bolt-to-amazon-sagemaker.ipynb) for more details.

### Forecasting

Expand Down
Loading