Skip to content

anishathalye/ribosome

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ribosome Build Status

Synthesize photos from PhotoDNA.

Ribosome demo

See the blog post for more information.

Installation

Dependencies

You can install Python dependencies using pip install -r requirements.txt. If you want to install the packages manually, here is a list:

Pre-trained models

Ribosome is released with 4 pre-trained models:

Use the models trained on NSFW data at your own risk.

Usage

Inference

Use the infer.py script to produce images from hashes:

python infer.py [--model MODEL] [--output OUTPUT] hash

The hash is a base64-encoded string, e.g. cVwhQ58OSCEOIwF+AigAkT0GAWdwAQs8o04KGYMfHBUANRUOAycUEFABCh6PABIghDBzCa4RTysQYVcvMDdkMypBPSyNAgRCcTf2AC9PfiYSWDw3KTcxPxM2HSqTDSIsgxJFFA+iihERcU4fHEY4Lj0xhw3QJN4OXQwbIzJjVTsUodIVVy3/FY8I/wcui11O.

Training

Datasets

Datasets consist of images paired with hashes, in the format of a CSV file with paths/hashes, and image files in a directory. The CSV file has two colums, path and hash (no header row). The hash is base64-encoded. Images are 100x100 in size. After producing such a CSV, it may be convenient to shuffle it and split it into a training set and validation set.

Example dataset

Ribosome includes an example dataset in this format, produced from COCO:

Preparing a dataset

To produce 100x100 images from an existing dataset, it may be convenient to use ImageMagick.

To resize image.jpg to 100x100 ignoring the original aspect ratio:

mogrify -resize '100x100!' image.jpg

To resize image.jpg to 100x100 by taking a center crop:

mogrify -resize '100x100^' -gravity Center -extent '100x100' image.jpg

You can process files in parallel using find / xargs, e.g. to convert all .jpg images using 24 threads:

find . -name '*.jpg' | xargs -n 1 -P 24 mogrify -resize '100x100!'

Ribosome does not provide code to compute PhotoDNA hashes, but such code is available in pyPhotoDNA.

Train a model

Use the train.py script to train a model on a dataset:

python train.py --train-data TRAIN_DATA ...
  • --train-data is the path to the train data CSV
  • Paths in the CSV are interpreted relative to --data-dir (or . if not supplied)
  • --val-data is the path to the validation data CSV; if provided, the script will report the validation loss after every epoch

See python train.py --help for all the options.

Citation

@misc{athalye2021ribosome,
  author = {Anish Athalye},
  title = {Inverting {PhotoDNA}},
  month = dec,
  year = 2021,
  howpublished = {\url{https://www.anishathalye.com/2021/12/20/inverting-photodna/}},
}

License

Copyright (c) Anish Athalye. Released under the MIT License. See LICENSE.md for details.

About

Synthesize photos from PhotoDNA using machine learning 🌱

Resources

License

Stars

Watchers

Forks

Languages