@@ -133,7 +133,7 @@ Search for an ensemble of machine learning algorithms
133
133
.. code-block :: none
134
134
135
135
136
- <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7fe257cbbe50 >
136
+ <autoPyTorch.api.tabular_classification.TabularClassificationTask object at 0x7fc73f9a9cd0 >
137
137
138
138
139
139
@@ -162,7 +162,7 @@ Print the final ensemble performance
162
162
163
163
.. code-block :: none
164
164
165
- <smac.runhistory.runhistory.RunHistory object at 0x7fe257b3a0d0 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
165
+ <smac.runhistory.runhistory.RunHistory object at 0x7fc73f9a9ee0 > [TrajEntry(train_perf=2147483648, incumbent_id=1, incumbent=Configuration:
166
166
data_loader:batch_size, Value: 64
167
167
encoder:__choice__, Value: 'OneHotEncoder'
168
168
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -194,7 +194,7 @@ Print the final ensemble performance
194
194
scaler:__choice__, Value: 'StandardScaler'
195
195
trainer:StandardTrainer:weighted_loss, Value: True
196
196
trainer:__choice__, Value: 'StandardTrainer'
197
- , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0010366439819335938 , budget=0), TrajEntry(train_perf=0.17543859649122806, incumbent_id=1, incumbent=Configuration:
197
+ , ta_runs=0, ta_time_used=0.0, wallclock_time=0.0012178421020507812 , budget=0), TrajEntry(train_perf=0.17543859649122806, incumbent_id=1, incumbent=Configuration:
198
198
data_loader:batch_size, Value: 64
199
199
encoder:__choice__, Value: 'OneHotEncoder'
200
200
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -226,7 +226,7 @@ Print the final ensemble performance
226
226
scaler:__choice__, Value: 'StandardScaler'
227
227
trainer:StandardTrainer:weighted_loss, Value: True
228
228
trainer:__choice__, Value: 'StandardTrainer'
229
- , ta_runs=1, ta_time_used=1.9255990982055664 , wallclock_time=2.953387975692749 , budget=5.555555555555555), TrajEntry(train_perf=0.14619883040935677, incumbent_id=2, incumbent=Configuration:
229
+ , ta_runs=1, ta_time_used=1.8383204936981201 , wallclock_time=2.867694139480591 , budget=5.555555555555555), TrajEntry(train_perf=0.14619883040935677, incumbent_id=2, incumbent=Configuration:
230
230
data_loader:batch_size, Value: 54
231
231
encoder:__choice__, Value: 'OneHotEncoder'
232
232
feature_preprocessor:__choice__, Value: 'NoFeaturePreprocessor'
@@ -259,29 +259,26 @@ Print the final ensemble performance
259
259
trainer:MixUpTrainer:alpha, Value: 0.8559230573827334
260
260
trainer:MixUpTrainer:weighted_loss, Value: True
261
261
trainer:__choice__, Value: 'MixUpTrainer'
262
- , ta_runs=18, ta_time_used=170.50614953041077 , wallclock_time=220.6971218585968 , budget=50.0)]
262
+ , ta_runs=18, ta_time_used=198.87974619865417 , wallclock_time=247.5048122406006 , budget=50.0)]
263
263
{'accuracy': 0.861271676300578}
264
264
| | Preprocessing | Estimator | Weight |
265
265
|---:|:------------------------------------------------------------------|:----------------------------------------------------------------|---------:|
266
- | 0 | None | CatBoostClassifier | 0.28 |
267
- | 1 | SimpleImputer,NoEncoder,Normalizer,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.2 |
268
- | 2 | None | KNNClassifier | 0.1 |
269
- | 3 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.1 |
270
- | 4 | SimpleImputer,OneHotEncoder,StandardScaler,Nystroem | no embedding,ResNetBackbone,FullyConnectedHead,nn.Sequential | 0.06 |
271
- | 5 | None | LGBMClassifier | 0.06 |
272
- | 6 | None | RFClassifier | 0.06 |
266
+ | 0 | SimpleImputer,NoEncoder,Normalizer,Nystroem | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.2 |
267
+ | 1 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.2 |
268
+ | 2 | None | CatBoostClassifier | 0.18 |
269
+ | 3 | None | SVC | 0.18 |
270
+ | 4 | None | RFClassifier | 0.08 |
271
+ | 5 | None | ExtraTreesClassifier | 0.06 |
272
+ | 6 | None | KNNClassifier | 0.06 |
273
273
| 7 | SimpleImputer,OneHotEncoder,MinMaxScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
274
- | 8 | SimpleImputer,NoEncoder,NoScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.04 |
275
- | 9 | None | SVC | 0.04 |
276
- | 10 | SimpleImputer,OneHotEncoder,StandardScaler,NoFeaturePreprocessing | no embedding,ShapedMLPBackbone,FullyConnectedHead,nn.Sequential | 0.02 |
277
274
278
275
279
276
280
277
281
278
282
279
.. rst-class :: sphx-glr-timing
283
280
284
- **Total running time of the script: ** ( 5 minutes 24.537 seconds)
281
+ **Total running time of the script: ** ( 5 minutes 26.583 seconds)
285
282
286
283
287
284
.. _sphx_glr_download_examples_20_basics_example_tabular_classification.py :
0 commit comments