Skip to content

[FIX] results management and visualisation with missing test data #465

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Aug 12, 2022
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 57 additions & 6 deletions autoPyTorch/utils/results_manager.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import io
from datetime import datetime
from typing import Any, Dict, List, Tuple, Union
from typing import Any, Dict, List, Optional, Tuple, Union

from ConfigSpace.configuration_space import Configuration

Expand Down Expand Up @@ -28,6 +28,9 @@
]


OPTIONAL_INFERENCE_CHOICES = ('test',)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Would it make sense to transfer this to constants.py?



def cost2metric(cost: float, metric: autoPyTorchMetric) -> float:
"""
Revert cost metric evaluated in SMAC to the original metric.
Expand Down Expand Up @@ -69,7 +72,7 @@ def _extract_metrics_info(
run_value: RunValue,
scoring_functions: List[autoPyTorchMetric],
inference_name: str
) -> Dict[str, float]:
) -> Dict[str, Optional[float]]:
"""
Extract the metric information given a run_value
and a list of metrics of interest.
Expand Down Expand Up @@ -97,7 +100,14 @@ def _extract_metrics_info(
if inference_name not in inference_choices:
raise ValueError(f'inference_name must be in {inference_choices}, but got {inference_choices}')

cost_info = run_value.additional_info[f'{inference_name}_loss']
cost_info = run_value.additional_info.get(f'{inference_name}_loss', None)
if cost_info is None:
if inference_name not in OPTIONAL_INFERENCE_CHOICES:
raise ValueError(f"Expected loss for {inference_name} set to not be None, but got {cost_info}")
else:
# Additional info for metrics is not available in this case.
return {metric.name: None for metric in scoring_functions}

avail_metrics = cost_info.keys()

return {
Expand Down Expand Up @@ -175,7 +185,7 @@ def _update(self, data: Dict[str, Any]) -> None:
)

self._train_scores.append(data[f'train_{self.metric_name}'])
self._test_scores.append(data[f'test_{self.metric_name}'])
self._test_scores.append(data.get(f'test_{self.metric_name}', None))
self._end_times.append(datetime.timestamp(data['Timestamp']))

def _sort_by_endtime(self) -> None:
Expand Down Expand Up @@ -413,11 +423,31 @@ def _extract_results_from_run_history(self, run_history: RunHistory) -> None:
config = run_history.ids_config[run_key.config_id]
self._update(config=config, run_key=run_key, run_value=run_value)

self._check_null_in_optional_inference_choices()

self.rank_opt_scores = scipy.stats.rankdata(
-1 * self._metric._sign * self.opt_scores, # rank order
method='min'
)

def _check_null_in_optional_inference_choices(
self
) -> None:
"""
Checks if the data is missing for each optional inference choice and
sets the scores for that inference choice to all None.
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It would be nice to also add the case of score == metric._worst_possible_result in the docstring:

Checks if the data is missing or if all scores are equal to the worst possible result for each optional inference choice and sets the scores for that inference choice to all None.

"""
for inference_choice in OPTIONAL_INFERENCE_CHOICES:
metrics_dict = getattr(self, f'{inference_choice}_metric_dict')
new_metric_dict = {}

for metric in self._scoring_functions:
scores = metrics_dict[metric.name]
if all([score is None or score == metric._worst_possible_result for score in scores]):
scores = [None] * len(self.status_types)
new_metric_dict[metric.name] = scores
setattr(self, f'{inference_choice}_metric_dict', new_metric_dict)


class MetricResults:
def __init__(
Expand Down Expand Up @@ -486,12 +516,24 @@ def _extract_results(self) -> None:
for inference_name in ['train', 'test', 'opt']:
# TODO: Extract information from self.search_results
data = getattr(self.search_results, f'{inference_name}_metric_dict')[metric_name]
if all([d is None for d in data]):
if inference_name not in OPTIONAL_INFERENCE_CHOICES:
raise ValueError(f"Expected {metric_name} score for {inference_name} set"
f" to not be None, but got {data}")
else:
continue
self.data[f'single::{inference_name}::{metric_name}'] = np.array(data)

if self.ensemble_results.empty() or inference_name == 'opt':
continue

data = getattr(self.ensemble_results, f'{inference_name}_scores')
if all([d is None for d in data]):
if inference_name not in OPTIONAL_INFERENCE_CHOICES:
raise ValueError(f"Expected {metric_name} score for {inference_name} set"
f" to not be None, but got {data}")
else:
continue
self.data[f'ensemble::{inference_name}::{metric_name}'] = np.array(data)

def get_ensemble_merged_data(self) -> Dict[str, np.ndarray]:
Expand All @@ -516,6 +558,8 @@ def get_ensemble_merged_data(self) -> Dict[str, np.ndarray]:
cur, timestep_size, sign = 0, self.cum_times.size, self.metric._sign
key_train, key_test = f'ensemble::train::{self.metric.name}', f'ensemble::test::{self.metric.name}'

all_test_perfs_null = all([perf is None for perf in test_scores])

train_perfs = np.full_like(self.cum_times, self.metric._worst_possible_result)
test_perfs = np.full_like(self.cum_times, self.metric._worst_possible_result)

Expand All @@ -530,9 +574,16 @@ def get_ensemble_merged_data(self) -> Dict[str, np.ndarray]:
time_index = min(cur, timestep_size - 1)
# If there already exists a previous allocated value, update by a better value
train_perfs[time_index] = sign * max(sign * train_perfs[time_index], sign * train_score)
test_perfs[time_index] = sign * max(sign * test_perfs[time_index], sign * test_score)
# test_perfs can be none when X_test is not passed
if not all_test_perfs_null:
test_perfs[time_index] = sign * max(sign * test_perfs[time_index], sign * test_score)

update_dict = {key_train: train_perfs}
if not all_test_perfs_null:
update_dict[key_test] = test_perfs

data.update(update_dict)

data.update({key_train: train_perfs, key_test: test_perfs})
return data


Expand Down
10 changes: 9 additions & 1 deletion autoPyTorch/utils/results_visualizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@

import numpy as np

from autoPyTorch.utils.results_manager import MetricResults
from autoPyTorch.utils.results_manager import MetricResults, OPTIONAL_INFERENCE_CHOICES


plt.rcParams["font.family"] = "Times New Roman"
Expand Down Expand Up @@ -318,7 +318,15 @@ def plot_perf_over_time(
minimize = (results.metric._sign == -1)

for key in data.keys():
inference_name = key.split('::')[1]
_label, _color, _perfs = labels[key], colors[key], data[key]
all_null_perfs = all([perf is None for perf in _perfs])

if all_null_perfs:
if inference_name not in OPTIONAL_INFERENCE_CHOICES:
raise ValueError(f"Expected loss for {inference_name} set to not be None")
else:
continue
# Take the best results over time
_cum_perfs = np.minimum.accumulate(_perfs) if minimize else np.maximum.accumulate(_perfs)

Expand Down
Loading