Skip to content

Fix the problem with the regions in unit tests. Testing changes to th… #2

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 5 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions buildspec_integ.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ phases:
pre_build:
commands:
- python setup.py develop
- pip install -e .[test]
build:
commands:
- tox tests/integ/
1 change: 1 addition & 0 deletions buildspec_unit.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ phases:
pre_build:
commands:
- python setup.py develop
- pip install -e .[test]
build:
commands:
- tox tests/unit/
6 changes: 3 additions & 3 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,13 +61,13 @@ def read_version():
install_requires=required_packages,
extras_require={
"test": [
"tox==3.13.1",
"pytest==4.4.1",
"tox>=3.13.1",
"pytest>=4.4.1",
"stopit==1.1.2",
"tensorflow>=1.3.0",
"mock>=2.0.0",
"contextlib2==0.5.5",
"IPython==7.8.0"
"IPython>=7.8.0"
]
}
)
Binary file added tests/data/one_p_mnist/mnist.pkl.gz
Binary file not shown.
10 changes: 10 additions & 0 deletions tests/data/one_p_mnist/transform_input.csv

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions tests/integ/test_inference_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ def sklearn_preprocessor(sagemaker_role_arn, sagemaker_session):
sklearn_preprocessor = SKLearn(
entry_point=script_path,
role=sagemaker_role_arn,
train_instance_type="ml.m5.large",
train_instance_type="ml.m5.xlarge",
sagemaker_session=sagemaker_session,
hyperparameters={"epochs": 1},
)
Expand All @@ -61,7 +61,7 @@ def sklearn_estimator(sagemaker_role_arn, sagemaker_session):
sklearn_estimator = SKLearn(
entry_point=script_path,
role=sagemaker_role_arn,
train_instance_type="ml.m5.large",
train_instance_type="ml.m5.xlarge",
sagemaker_session=sagemaker_session,
hyperparameters={"epochs": 1},
input_mode='File'
Expand Down
4 changes: 2 additions & 2 deletions tests/integ/test_sagemaker_steps.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@
)

INSTANCE_COUNT = 1
INSTANCE_TYPE = "ml.m5.large"
INSTANCE_TYPE = "ml.m5.xlarge"

CREATE_ENDPOINT_TIMEOUT_MINUTES = 20

Expand Down Expand Up @@ -255,7 +255,7 @@ def test_tuning_step(sfn_client, record_set_for_hyperparameter_tuning, sagemaker
kmeans = KMeans(
role=sagemaker_role_arn,
train_instance_count=1,
train_instance_type='ml.m5.large',
train_instance_type=INSTANCE_TYPE,
k=10
)

Expand Down
2 changes: 1 addition & 1 deletion tests/integ/test_state_machine_definition.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ def training_job_parameters(sagemaker_session, sagemaker_role_arn, record_set_fi
},
"ResourceConfig": {
"InstanceCount": 1,
"InstanceType": "ml.m5.large",
"InstanceType": "ml.m5.xlarge",
"VolumeSizeInGB": 30
},
"RoleArn": sagemaker_role_arn,
Expand Down
6 changes: 3 additions & 3 deletions tests/integ/test_training_pipeline_estimators.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@ def pca_estimator(sagemaker_role_arn):
role=sagemaker_role_arn,
num_components=1,
train_instance_count=1,
train_instance_type='ml.m5.large',
train_instance_type='ml.m5.xlarge',
)

pca_estimator.feature_dim=500
Expand Down Expand Up @@ -125,7 +125,7 @@ def test_pca_estimator(sfn_client, sagemaker_session, sagemaker_role_arn, sfn_ro
'OutputDataConfig': {'S3OutputPath': s3_output_path},
'StoppingCondition': {'MaxRuntimeInSeconds': 86400},
'ResourceConfig': {'InstanceCount': 1,
'InstanceType': 'ml.m5.large',
'InstanceType': 'ml.m5.xlarge',
'VolumeSizeInGB': 30},
'RoleArn': sagemaker_role_arn,
'InputDataConfig': [{'DataSource': {'S3DataSource': {'S3DataDistributionType': 'ShardedByS3Key',
Expand All @@ -141,7 +141,7 @@ def test_pca_estimator(sfn_client, sagemaker_session, sagemaker_role_arn, sfn_ro
'ExecutionRoleArn': sagemaker_role_arn},
'Configure Endpoint': {'EndpointConfigName': job_name,
'ProductionVariants': [{'ModelName': job_name,
'InstanceType': 'ml.m5.large',
'InstanceType': 'ml.m5.xlarge',
'InitialInstanceCount': 1,
'VariantName': 'AllTraffic'}]},
'Deploy': {'EndpointName': job_name,
Expand Down
4 changes: 2 additions & 2 deletions tests/integ/test_training_pipeline_framework_estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ def torch_estimator(sagemaker_role_arn):
role=sagemaker_role_arn,
framework_version='1.1.0',
train_instance_count=1,
train_instance_type='ml.m5.large',
train_instance_type='ml.m5.xlarge',
hyperparameters={
'epochs': 6,
'backend': 'gloo'
Expand All @@ -53,7 +53,7 @@ def sklearn_estimator(sagemaker_role_arn):
entry_point=script_path,
role=sagemaker_role_arn,
train_instance_count=1,
train_instance_type='ml.m5.large',
train_instance_type='ml.m5.xlarge',
framework_version='0.20.0',
hyperparameters={
"epochs": 1
Expand Down
36 changes: 25 additions & 11 deletions tests/unit/test_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,29 +13,35 @@
from __future__ import absolute_import

import pytest
from unittest.mock import MagicMock, patch
import sagemaker

from sagemaker.sklearn.estimator import SKLearn
from unittest.mock import MagicMock, patch
from stepfunctions.template import TrainingPipeline, InferencePipeline
from sagemaker.amazon.amazon_estimator import get_image_uri

from stepfunctions.template import TrainingPipeline, InferencePipeline
from tests.unit.utils import mock_boto_api_call

SAGEMAKER_EXECUTION_ROLE = 'SageMakerExecutionRole'
STEPFUNCTIONS_EXECUTION_ROLE = 'StepFunctionsExecutionRole'
PCA_IMAGE = '382416733822.dkr.ecr.us-east-1.amazonaws.com/pca:1'
LINEAR_LEARNER_IMAGE = '382416733822.dkr.ecr.us-east-1.amazonaws.com/linear-learner:1'

PCA_IMAGE = get_image_uri('us-east-1', 'pca')
LINEAR_LEARNER_IMAGE = get_image_uri('us-east-1', 'linear-learner')

@pytest.fixture
def pca_estimator():
s3_output_location = 's3://sagemaker/models'

sagemaker_session = MagicMock()
sagemaker_session.boto_region_name = 'us-east-1'

pca = sagemaker.estimator.Estimator(
PCA_IMAGE,
role=SAGEMAKER_EXECUTION_ROLE,
train_instance_count=1,
train_instance_type='ml.c4.xlarge',
output_path=s3_output_location
output_path=s3_output_location,
sagemaker_session=sagemaker_session
)

pca.set_hyperparameters(
Expand All @@ -50,24 +56,29 @@ def pca_estimator():

@pytest.fixture
def sklearn_preprocessor():
sagemaker_session = MagicMock()
script_path = 'sklearn_abalone_featurizer.py'
source_dir = 's3://sagemaker/source'

sagemaker_session = MagicMock()
sagemaker_session.boto_region_name = 'us-east-1'

sklearn_preprocessor = SKLearn(
entry_point=script_path,
role=SAGEMAKER_EXECUTION_ROLE,
train_instance_type="ml.c4.xlarge",
source_dir=source_dir
source_dir=source_dir,
sagemaker_session=sagemaker_session
)

return sklearn_preprocessor

@pytest.fixture
def linear_learner_estimator():
sagemaker_session = MagicMock()
s3_output_location = 's3://sagemaker/models'

sagemaker_session = MagicMock()
sagemaker_session.boto_region_name = 'us-east-1'

ll_estimator = sagemaker.estimator.Estimator(
LINEAR_LEARNER_IMAGE,
SAGEMAKER_EXECUTION_ROLE,
Expand All @@ -76,10 +87,13 @@ def linear_learner_estimator():
train_volume_size=20,
train_max_run=3600,
input_mode='File',
output_path=s3_output_location
output_path=s3_output_location,
sagemaker_session=sagemaker_session
)

ll_estimator.set_hyperparameters(feature_dim=10, predictor_type='regressor', mini_batch_size=32)
ll_estimator.sagemaker_session = MagicMock()
ll_estimator.sagemaker_session.boto_region_name = 'us-east-1'

return ll_estimator

Expand Down Expand Up @@ -218,7 +232,7 @@ def test_inference_pipeline(sklearn_preprocessor, linear_learner_estimator):
s3_bucket = 'sagemaker-us-east-1'

pipeline = InferencePipeline(
preprocessor=sklearn_preprocessor,
preprocessor=sklearn_preprocessor,
estimator=linear_learner_estimator,
data=s3_inputs,
s3_bucket=s3_bucket,
Expand Down