Skip to content

Support boolean False for debugger_hook_config parameter #83

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Sep 2, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/stepfunctions/steps/sagemaker.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@ def __init__(self, state_id, estimator, job_name, data=None, hyperparameters=Non
else:
parameters = training_config(estimator=estimator, inputs=data, mini_batch_size=mini_batch_size)

if estimator.debugger_hook_config != None:
if estimator.debugger_hook_config != None and estimator.debugger_hook_config is not False:
parameters['DebugHookConfig'] = estimator.debugger_hook_config._to_request_dict()

if estimator.rules != None:
Expand Down
65 changes: 65 additions & 0 deletions tests/unit/test_sagemaker_steps.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,6 +111,34 @@ def pca_estimator_with_debug_hook():

return pca


@pytest.fixture
def pca_estimator_with_falsy_debug_hook():
s3_output_location = 's3://sagemaker/models'

pca = sagemaker.estimator.Estimator(
PCA_IMAGE,
role=EXECUTION_ROLE,
train_instance_count=1,
train_instance_type='ml.c4.xlarge',
output_path=s3_output_location,
debugger_hook_config = False
)

pca.set_hyperparameters(
feature_dim=50000,
num_components=10,
subtract_mean=True,
algorithm_mode='randomized',
mini_batch_size=200
)

pca.sagemaker_session = MagicMock()
pca.sagemaker_session.boto_region_name = 'us-east-1'
pca.sagemaker_session._default_bucket = 'sagemaker'

return pca

@pytest.fixture
def pca_model():
model_data = 's3://sagemaker/models/pca.tar.gz'
Expand Down Expand Up @@ -283,6 +311,43 @@ def test_training_step_creation_with_debug_hook(pca_estimator_with_debug_hook):
'End': True
}

@patch('botocore.client.BaseClient._make_api_call', new=mock_boto_api_call)
def test_training_step_creation_with_falsy_debug_hook(pca_estimator_with_falsy_debug_hook):
step = TrainingStep('Training',
estimator=pca_estimator_with_falsy_debug_hook,
job_name='TrainingJob')
assert step.to_dict() == {
'Type': 'Task',
'Parameters': {
'AlgorithmSpecification': {
'TrainingImage': PCA_IMAGE,
'TrainingInputMode': 'File'
},
'OutputDataConfig': {
'S3OutputPath': 's3://sagemaker/models'
},
'StoppingCondition': {
'MaxRuntimeInSeconds': 86400
},
'ResourceConfig': {
'InstanceCount': 1,
'InstanceType': 'ml.c4.xlarge',
'VolumeSizeInGB': 30
},
'RoleArn': EXECUTION_ROLE,
'HyperParameters': {
'feature_dim': '50000',
'num_components': '10',
'subtract_mean': 'True',
'algorithm_mode': 'randomized',
'mini_batch_size': '200'
},
'TrainingJobName': 'TrainingJob'
},
'Resource': 'arn:aws:states:::sagemaker:createTrainingJob.sync',
'End': True
}

@patch('botocore.client.BaseClient._make_api_call', new=mock_boto_api_call)
def test_training_step_creation_with_model(pca_estimator):
training_step = TrainingStep('Training', estimator=pca_estimator, job_name='TrainingJob')
Expand Down