Open
Description
I did a quick benchmark to evaluate the overhead of C++ -> Python conversion:
py::array_t<PyObjectGeography> create(py::array_t<double> xs, py::array_t<double> ys) {
py::buffer_info xbuf = xs.request(), ybuf = ys.request();
auto result = py::array_t<PyObjectGeography>(xbuf.size);
py::buffer_info rbuf = result.request();
double *xptr = static_cast<double *>(xbuf.ptr);
double *yptr = static_cast<double *>(ybuf.ptr);
py::object *rptr = static_cast<py::object *>(rbuf.ptr);
py::gil_scoped_release();
for (size_t i = 0; i < xbuf.shape[0]; i++) {
auto point_ptr = PointFactory::FromLatLonDegrees(xptr[i], yptr[i]);
// either one or the other of the two code lines below are commented out.
// "cast" benchmark (calls py::cast)
rptr[i] = py::cast(std::move(point_ptr));
// or
// "no_cast" benchmark (just create an empty python object)
rptr[i] = py::object()
}
return result;
...
m.def("create", &create);
Here are the results:
x = np.random.rand(10_000)
y = np.random.rand(10_000)
# "cast" benchmark
%timeit s2shapely.create(x, y)
# 12.6 ms ± 241 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
# "no cast" benchmark
%timeit s2shapely.create(x, y)
# 4.46 ms ± 156 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
The cast version is almost 3x slower than the no cast version. That's a lot for "just" wrapping the C++ geography in a Python object. Not sure what's happening (the Geography (sub)classes only implement move semantics, so there shouldn't be any data copy at this level), but there must be something wrong.
Metadata
Metadata
Assignees
Labels
No labels