Skip to content

[rand] Use \dotsc, not \ldots for comma-separated lists #2033

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 15, 2018
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 34 additions & 34 deletions source/numerics.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2980,7 +2980,7 @@
of \state{x}{i}
consists of
the values of
$X_{i-n}, \ldots, X_{i-1}$,
$X_{i-n}, \dotsc, X_{i-1}$,
in that order.

\indexlibrary{\idxcode{mersenne_twister_engine}!constructor}%
Expand All @@ -2991,7 +2991,7 @@
\begin{itemdescr}
\pnum\effects Constructs a \tcode{mersenne_twister_engine} object.
Sets $X_{-n}$ to $\tcode{value} \bmod 2^w$.
Then, iteratively for $i = 1\!-\!n,\ldots,-1$,
Then, iteratively for $i = 1\!-\!n,\dotsc,-1$,
sets $X_i$
to
\[%
Expand All @@ -3018,7 +3018,7 @@
and $a$ an array (or equivalent)
of length $ n \cdot k $,
invokes \tcode{q.generate($a+0$, $a+n \cdot k$)}
and then, iteratively for $i = -n,\ldots,-1$,
and then, iteratively for $i = -n,\dotsc,-1$,
sets $X_i$
to $ \left(\sum_{j=0}^{k-1}a_{k(i+n)+j} \cdot 2^{32j} \right) \bmod 2^w $.
Finally,
Expand Down Expand Up @@ -3135,7 +3135,7 @@
\indextext{\idxcode{subtract_with_carry_engine}!textual representation}%
\indextext{textual representation!\idxcode{subtract_with_carry_engine}}
consists of the values of
$X_{i-r}, \ldots, X_{i-1}$,
$X_{i-r}, \dotsc, X_{i-1}$,
in that order, followed by $c$.


Expand All @@ -3147,7 +3147,7 @@
\begin{itemdescr}
\pnum\effects Constructs a \tcode{subtract_with_carry_engine} object.
Sets the values of
$ X_{-r}, \ldots, X_{-1} $,
$ X_{-r}, \dotsc, X_{-1} $,
in that order, as specified below.
If $X_{-1}$ is then $0$,
sets $c$ to $1$;
Expand All @@ -3161,7 +3161,7 @@
40014u,0u,2147483563u> e(value == 0u ? default_seed : value);
\end{codeblock}
Then, to set each $X_k$,
obtain new values $ z_0, \ldots, z_{n-1} $
obtain new values $ z_0, \dotsc, z_{n-1} $
from $n = \lceil w/32 \rceil $ successive invocations
of \tcode{e} taken modulo $2^{32}$.
Set $X_k$ to $ \left( \sum_{j=0}^{n-1} z_j \cdot 2^{32j}\right) \bmod m$.
Expand All @@ -3184,7 +3184,7 @@
and $a$ an array (or equivalent)
of length $ r \cdot k $,
invokes \tcode{q.generate($a+0$, $a+r \cdot k$)}
and then, iteratively for $i = -r, \ldots, -1$,
and then, iteratively for $i = -r, \dotsc, -1$,
sets $X_i$
to $ \left(\sum_{j=0}^{k-1}a_{k(i+r)+j} \cdot 2^{32j} \right) \bmod m $.
If $X_{-1}$ is then $0$,
Expand Down Expand Up @@ -3604,7 +3604,7 @@
each constructor%
\indexlibrary{\idxcode{shuffle_order_engine}!constructor}
that is not a copy constructor
initializes $\tcode{V[0]}, \ldots, \tcode{V[k-1]}$ and $Y$,
initializes $\tcode{V[0]}, \dotsc, \tcode{V[k-1]}$ and $Y$,
in that order,
with values returned by successive invocations of \tcode{e()}.%
\indextext{random number generation!engines|)}
Expand Down Expand Up @@ -3879,7 +3879,7 @@
returns $0.0$.
Otherwise, returns an entropy estimate\footnote{If a device has $n$ states
whose respective probabilities are
$ P_0, \ldots, P_{n-1} $,
$ P_0, \dotsc, P_{n-1} $,
the device entropy $S$ is defined as\\
$ S = - \sum_{i=0}^{n-1} P_i \cdot \log P_i $.}
for the random numbers returned by \tcode{operator()},
Expand Down Expand Up @@ -4050,7 +4050,7 @@
\item
With $m$ as the larger of $s + 1$ and $n$,
transform the elements of the range:
iteratively for $ k = 0, \ldots, m-1 $,
iteratively for $ k = 0, \dotsc, m-1 $,
calculate values
\begin{eqnarray*}
r_1 & = &
Expand All @@ -4077,7 +4077,7 @@
\item
Transform the elements of the range again,
beginning where the previous step ended:
iteratively for $ k = m, \ldots, m\!+\!n\!-\!1 $,
iteratively for $ k = m, \dotsc, m\!+\!n\!-\!1 $,
calculate values
\begin{eqnarray*}
r_3 & = &
Expand Down Expand Up @@ -4195,7 +4195,7 @@

\pnum\effects
Invokes \tcode{g()} $k$ times
to obtain values $ g_0, \ldots, g_{k-1} $, respectively.
to obtain values $ g_0, \dotsc, g_{k-1} $, respectively.
Calculates a quantity
\[
S = \sum_{i=0}^{k-1} (g_i - \tcode{g.min()})
Expand Down Expand Up @@ -5782,15 +5782,15 @@
\indextext{discrete probability function!\idxcode{discrete_distribution}}%
\indextext{\idxcode{discrete_distribution}!discrete probability function}%
\[%
P(i\,|\,p_0,\ldots,p_{n-1})
P(i\,|\,p_0,\dotsc,p_{n-1})
= p_i
\; \mbox{.}
\]

\pnum
Unless specified otherwise,
the distribution parameters are calculated as:
$p_k = {w_k / S} \; \mbox{ for } k = 0, \ldots, n\!-\!1$ ,
$p_k = {w_k / S} \; \mbox{ for } k = 0, \dotsc, n\!-\!1$ ,
in which
the values $w_k$,
commonly known as the \techterm{weights}%
Expand Down Expand Up @@ -5910,7 +5910,7 @@
let $ w_0 = 1 $.
Otherwise,
let $ w_k = \tcode{fw}(\tcode{xmin} + k \cdot \delta + \delta / 2) $
for $ k = 0, \ldots, n\!-\!1 $.
for $ k = 0, \dotsc, n\!-\!1 $.

\pnum\complexity
The number of invocations of \tcode{fw} shall not exceed $n$.
Expand All @@ -5925,7 +5925,7 @@
\pnum\returns A \tcode{vector<double>}
whose \tcode{size} member returns $n$
and whose $ \tcode{operator[]} $ member returns $p_k$
when invoked with argument $k$ for $k = 0, \ldots, n\!-\!1 $.
when invoked with argument $k$ for $k = 0, \dotsc, n\!-\!1 $.
\end{itemdescr}


Expand All @@ -5947,7 +5947,7 @@
\indextext{probability density function!\idxcode{piecewise_constant_distribution}}%
\indextext{\idxcode{piecewise_constant_distribution}!probability density function}%
\[%
p(x\,|\,b_0,\ldots,b_n,\;\rho_0,\ldots,\rho_{n-1})
p(x\,|\,b_0,\dotsc,b_n,\;\rho_0,\dotsc,\rho_{n-1})
= \rho_i
\; \mbox{,}
\mbox{ for } b_i \le x < b_{i+1}
Expand All @@ -5961,13 +5961,13 @@
\indextext{interval boundaries!\idxcode{piecewise_constant_distribution}}%
, shall satisfy the relation
$ b_i < b_{i+1} $
for $i = 0, \ldots, n\!-\!1 $.
for $i = 0, \dotsc, n\!-\!1 $.
Unless specified otherwise,
the remaining $n$ distribution parameters are calculated as:
\[%
\rho_k = \;
\frac{w_k}{S \cdot (b_{k+1}-b_k)}
\; \mbox{ for } k = 0, \ldots, n\!-\!1,
\; \mbox{ for } k = 0, \dotsc, n\!-\!1,
\]
in which the values $w_k$,
commonly known as the \techterm{weights}%
Expand Down Expand Up @@ -6089,10 +6089,10 @@
and $ b_1 = 1 $.
Otherwise,
let $\bigl[\tcode{bl.begin()}, \tcode{bl.end()}\bigr)$
form a sequence $ b_0, \ldots, b_n $,
form a sequence $ b_0, \dotsc, b_n $,
and
let $ w_k = \tcode{fw}\bigl(\bigl(b_{k+1} + b_k\bigr) / 2\bigr) $
for $ k = 0, \ldots, n\!-\!1 $.
for $ k = 0, \dotsc, n\!-\!1 $.

\pnum\complexity
The number of invocations of \tcode{fw} shall not exceed $n$.
Expand Down Expand Up @@ -6120,8 +6120,8 @@
\pnum\effects Constructs a \tcode{piecewise_constant_distribution} object
with parameters taken or calculated
from the following values:
Let $ b_k = \tcode{xmin} + k \cdot \delta $ for $ k = 0, \ldots, n $,
and $ w_k = \tcode{fw}(b_k + \delta / 2) $ for $ k = 0, \ldots, n\!-\!1 $.
Let $ b_k = \tcode{xmin} + k \cdot \delta $ for $ k = 0, \dotsc, n $,
and $ w_k = \tcode{fw}(b_k + \delta / 2) $ for $ k = 0, \dotsc, n\!-\!1 $.

\pnum\complexity
The number of invocations of \tcode{fw} shall not exceed $n$.
Expand All @@ -6136,7 +6136,7 @@
\pnum\returns A \tcode{vector<result_type>}
whose \tcode{size} member returns $n + 1$
and whose $ \tcode{operator[]} $ member returns $b_k$
when invoked with argument $k$ for $k = 0, \ldots, n $.
when invoked with argument $k$ for $k = 0, \dotsc, n $.
\end{itemdescr}

\indexlibrarymember{densities}{piecewise_constant_distribution}%
Expand All @@ -6148,7 +6148,7 @@
\pnum\returns A \tcode{vector<result_type>}
whose \tcode{size} member returns $n$
and whose $ \tcode{operator[]} $ member returns $\rho_k$
when invoked with argument $k$ for $k = 0, \ldots, n\!-\!1 $.
when invoked with argument $k$ for $k = 0, \dotsc, n\!-\!1 $.
\end{itemdescr}


Expand All @@ -6170,7 +6170,7 @@
\indextext{probability density function!\idxcode{piecewise_linear_distribution}}%
\indextext{\idxcode{piecewise_linear_distribution}!probability density function}%
\[%
p(x\,|\,b_0,\ldots,b_n,\;\rho_0,\ldots,\rho_n)
p(x\,|\,b_0,\dotsc,b_n,\;\rho_0,\dotsc,\rho_n)
= \rho_i \cdot {\frac{b_{i+1} - x}{b_{i+1} - b_i}}
+ \rho_{i+1} \cdot {\frac{x - b_i}{b_{i+1} - b_i}}
\; \mbox{,}
Expand All @@ -6185,10 +6185,10 @@
\indextext{interval boundaries!\idxcode{piecewise_linear_distribution}}%
, shall satisfy the relation
$ b_i < b_{i+1} $
for $i = 0, \ldots, n\!-\!1 $.
for $i = 0, \dotsc, n\!-\!1 $.
Unless specified otherwise,
the remaining $n+1$ distribution parameters are calculated as
$ \rho_k = {w_k / S} \; \mbox{ for } k = 0, \ldots, n $,
$ \rho_k = {w_k / S} \; \mbox{ for } k = 0, \dotsc, n $,
in which the values $w_k$,
commonly known as the \techterm{weights at boundaries}%
\indextext{\idxcode{piecewise_linear_distribution}!weights at boundaries}%
Expand Down Expand Up @@ -6310,10 +6310,10 @@
and $ b_1 = 1 $.
Otherwise,
let $\bigl[\tcode{bl.begin(),} \tcode{bl.end()}\bigr)$
form a sequence $ b_0, \ldots, b_n $,
form a sequence $ b_0, \dotsc, b_n $,
and
let $ w_k = \tcode{fw}(b_k) $
for $ k = 0, \ldots, n $.
for $ k = 0, \dotsc, n $.

\pnum\complexity
The number of invocations of \tcode{fw} shall not exceed $n+1$.
Expand Down Expand Up @@ -6341,8 +6341,8 @@
\pnum\effects Constructs a \tcode{piecewise_linear_distribution} object
with parameters taken or calculated
from the following values:
Let $ b_k = \tcode{xmin} + k \cdot \delta $ for $ k = 0, \ldots, n $,
and $ w_k = \tcode{fw}(b_k) $ for $ k = 0, \ldots, n $.
Let $ b_k = \tcode{xmin} + k \cdot \delta $ for $ k = 0, \dotsc, n $,
and $ w_k = \tcode{fw}(b_k) $ for $ k = 0, \dotsc, n $.

\pnum\complexity
The number of invocations of \tcode{fw} shall not exceed $n+1$.
Expand All @@ -6357,7 +6357,7 @@
\pnum\returns A \tcode{vector<result_type>}
whose \tcode{size} member returns $n + 1$
and whose $ \tcode{operator[]} $ member returns $b_k$
when invoked with argument $k$ for $k = 0, \ldots, n $.
when invoked with argument $k$ for $k = 0, \dotsc, n $.
\end{itemdescr}

\indexlibrarymember{densities}{piecewise_linear_distribution}%
Expand All @@ -6369,7 +6369,7 @@
\pnum\returns A \tcode{vector<result_type>}
whose \tcode{size} member returns $n$
and whose $ \tcode{operator[]} $ member returns $\rho_k$
when invoked with argument $k$ for $ k = 0, \ldots, n $.
when invoked with argument $k$ for $ k = 0, \dotsc, n $.
\end{itemdescr}%
%
\indextext{random number distributions!sampling|)}%
Expand Down