Skip to content

Commit b77fbf7

Browse files
Copilotkiview
andcommitted
Update Embedding Gemma model card to Q8_0 quantization and add Unsloth attribution
Co-authored-by: kiview <[email protected]>
1 parent f93e634 commit b77fbf7

File tree

1 file changed

+5
-4
lines changed

1 file changed

+5
-4
lines changed

ai/embedding-gemma.md

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
![logo](https://github.com/docker/model-cards/raw/refs/heads/main/logos/[email protected])
44

5-
**Embedding Gemma** is a state-of-the-art text embedding model from Google DeepMind, designed to create high-quality vector representations of text. Built on the Gemma architecture, this model converts text into dense vector embeddings that capture semantic meaning, making it ideal for retrieval-augmented generation (RAG), semantic search, and similarity tasks. With open weights and efficient design, Embedding Gemma provides a powerful foundation for embedding-based applications.
5+
**Embedding Gemma** is a state-of-the-art text embedding model from Google DeepMind, designed to create high-quality vector representations of text. Built on the Gemma architecture, this model converts text into dense vector embeddings that capture semantic meaning, making it ideal for retrieval-augmented generation (RAG), semantic search, and similarity tasks. With open weights and efficient design, Embedding Gemma provides a powerful foundation for embedding-based applications. The GGUF format version is provided by Unsloth.
66

77
## Intended uses
88

@@ -29,12 +29,12 @@ Embedding Gemma is designed for applications requiring high-quality text embeddi
2929

3030
| Model variant | Parameters | Quantization | Context window | VRAM¹ | Size |
3131
|----------------------------------------------------------------------|------------|--------------|----------------|----------|-----------|
32-
| `ai/embedding-gemma:latest`<br><br>`ai/embedding-gemma:300M-F16` | 300M | F16 | 2K tokens | 0.68 GiB | 571.25 MB |
33-
| `ai/embedding-gemma:300M-F16` | 300M | F16 | 2K tokens | 0.68 GiB | 571.25 MB |
32+
| `ai/embedding-gemma:latest`<br><br>`ai/embedding-gemma:300M-Q8_0` | 300M | Q8_0 | 2K tokens | 0.95 GiB | 761.25 MB |
33+
| `ai/embedding-gemma:300M-Q8_0` | 300M | Q8_0 | 2K tokens | 0.95 GiB | 761.25 MB |
3434

3535
¹: VRAM estimated based on model characteristics.
3636

37-
> `latest``300M-F16`
37+
> `latest``300M-Q8_0`
3838
3939
## Use this AI model with Docker Model Runner
4040

@@ -84,5 +84,6 @@ For more information on Docker Model Runner, [explore the documentation](https:/
8484
## Links
8585

8686
- [Embedding Gemma Model Card](https://huggingface.co/google/embeddinggemma-300m)
87+
- [Unsloth GGUF Version](https://huggingface.co/unsloth/embeddinggemma-300m-GGUF)
8788
- [Gemma Model Family](https://ai.google.dev/gemma/docs)
8889
- [Gemma Terms of Use](https://ai.google.dev/gemma/terms)

0 commit comments

Comments
 (0)