A lightweight MCP (Model Context Protocol) server that enables AI coding assistants to interact with Google's Gemini AI through the official CLI. Works with Claude Code, Cursor, VS Code, and other MCP-compatible clients. Designed for simplicity, reliability, and seamless integration.
- Direct Gemini CLI Integration: Zero API costs using official Gemini CLI
- Simple MCP Tools: Two core functions for basic queries and file analysis
- Stateless Operation: No sessions, caching, or complex state management
- Production Ready: Robust error handling with configurable 60-second timeouts
- Minimal Dependencies: Only requires
mcp>=1.0.0
and Gemini CLI - Easy Deployment: Support for both uvx and traditional pip installation
- Universal MCP Compatibility: Works with any MCP-compatible AI coding assistant
-
Install Gemini CLI:
npm install -g @google/gemini-cli
-
Authenticate with Gemini:
gemini auth login
-
Verify installation:
gemini --version
🎯 Recommended: PyPI Installation
# Install from PyPI
pip install gemini-bridge
# Add to Claude Code with uvx (recommended)
claude mcp add gemini-bridge -s user -- uvx gemini-bridge
Alternative: From Source
# Clone the repository
git clone https://github.com/shelakh/gemini-bridge.git
cd gemini-bridge
# Build and install locally
uvx --from build pyproject-build
pip install dist/*.whl
# Add to Claude Code
claude mcp add gemini-bridge -s user -- uvx gemini-bridge
Development Installation
# Clone and install in development mode
git clone https://github.com/shelakh/gemini-bridge.git
cd gemini-bridge
pip install -e .
# Add to Claude Code (development)
claude mcp add gemini-bridge-dev -s user -- python -m src
Gemini Bridge works with any MCP-compatible AI coding assistant - the same server supports multiple clients through different configuration methods.
- Claude Code ✅ (Default)
- Cursor ✅
- VS Code ✅
- Windsurf ✅
- Cline ✅
- Void ✅
- Cherry Studio ✅
- Augment ✅
- Roo Code ✅
- Zencoder ✅
- Any MCP-compatible client ✅
Claude Code (Default)
# Recommended installation
claude mcp add gemini-bridge -s user -- uvx gemini-bridge
# Development installation
claude mcp add gemini-bridge-dev -s user -- python -m src
Cursor
Global Configuration (~/.cursor/mcp.json
):
{
"mcpServers": {
"gemini-bridge": {
"command": "uvx",
"args": ["gemini-bridge"],
"env": {}
}
}
}
Project-Specific (.cursor/mcp.json
in your project):
{
"mcpServers": {
"gemini-bridge": {
"command": "uvx",
"args": ["gemini-bridge"],
"env": {}
}
}
}
Go to: Settings
→ Cursor Settings
→ MCP
→ Add new global MCP server
VS Code
Configuration (.vscode/mcp.json
in your workspace):
{
"servers": {
"gemini-bridge": {
"type": "stdio",
"command": "uvx",
"args": ["gemini-bridge"]
}
}
}
Alternative: Through Extensions
- Open Extensions view (Ctrl+Shift+X)
- Search for MCP extensions
- Add custom server with command:
uvx gemini-bridge
Windsurf
Add to your Windsurf MCP configuration:
{
"mcpServers": {
"gemini-bridge": {
"command": "uvx",
"args": ["gemini-bridge"],
"env": {}
}
}
}
Cline (VS Code Extension)
- Open Cline and click MCP Servers in the top navigation
- Select Installed tab → Advanced MCP Settings
- Add to
cline_mcp_settings.json
:
{
"mcpServers": {
"gemini-bridge": {
"command": "uvx",
"args": ["gemini-bridge"],
"env": {}
}
}
}
Void
Go to: Settings
→ MCP
→ Add MCP Server
{
"mcpServers": {
"gemini-bridge": {
"command": "uvx",
"args": ["gemini-bridge"],
"env": {}
}
}
}
Cherry Studio
- Navigate to Settings → MCP Servers → Add Server
- Fill in the server details:
- Name:
gemini-bridge
- Type:
STDIO
- Command:
uvx
- Arguments:
["gemini-bridge"]
- Name:
- Save the configuration
Augment
Using the UI:
- Click hamburger menu → Settings → Tools
- Click + Add MCP button
- Enter command:
uvx gemini-bridge
- Name: Gemini Bridge
Manual Configuration:
"augment.advanced": {
"mcpServers": [
{
"name": "gemini-bridge",
"command": "uvx",
"args": ["gemini-bridge"],
"env": {}
}
]
}
Roo Code
- Go to Settings → MCP Servers → Edit Global Config
- Add to
mcp_settings.json
:
{
"mcpServers": {
"gemini-bridge": {
"command": "uvx",
"args": ["gemini-bridge"],
"env": {}
}
}
}
Zencoder
- Go to Zencoder menu (...) → Tools → Add Custom MCP
- Add configuration:
{
"command": "uvx",
"args": ["gemini-bridge"],
"env": {}
}
- Hit the Install button
Alternative Installation Methods
For pip-based installations:
{
"command": "gemini-bridge",
"args": [],
"env": {}
}
For development/local testing:
{
"command": "python",
"args": ["-m", "src"],
"env": {},
"cwd": "/path/to/gemini-bridge"
}
For npm-style installation (if needed):
{
"command": "npx",
"args": ["gemini-bridge"],
"env": {}
}
Once configured with any client, use the same two tools:
- Ask general questions: "What authentication patterns are used in this codebase?"
- Analyze specific files: "Review these auth files for security issues"
The server implementation is identical - only the client configuration differs!
By default, Gemini Bridge uses a 60-second timeout for all CLI operations. For longer queries (large files, complex analysis), you can configure a custom timeout using the GEMINI_BRIDGE_TIMEOUT
environment variable.
Example configurations:
Claude Code
# Add with custom timeout (120 seconds)
claude mcp add gemini-bridge -s user --env GEMINI_BRIDGE_TIMEOUT=120 -- uvx gemini-bridge
Manual Configuration (mcp_settings.json)
{
"mcpServers": {
"gemini-bridge": {
"command": "uvx",
"args": ["gemini-bridge"],
"env": {
"GEMINI_BRIDGE_TIMEOUT": "120"
}
}
}
}
Timeout Options:
- Default: 60 seconds (if not configured)
- Range: Any positive integer (seconds)
- Per-call override: Supply
timeout_seconds
to either tool for one-off extensions - Recommended: 120-300 seconds for large file analysis
- Invalid values: Fall back to 60 seconds with warning
Direct CLI bridge for simple queries.
Parameters:
query
(string): The question or prompt to send to Geminidirectory
(string): Working directory for the query (default: current directory)model
(string, optional): Model to use - "flash" or "pro" (default: "flash")timeout_seconds
(int, optional): Override the execution timeout for this request
Example:
consult_gemini(
query="Find authentication patterns in this codebase",
directory="/path/to/project",
model="flash"
)
CLI bridge with file attachments for detailed analysis.
Parameters:
query
(string): The question or prompt to send to Geminidirectory
(string): Working directory for the queryfiles
(list): List of file paths relative to the directorymodel
(string, optional): Model to use - "flash" or "pro" (default: "flash")timeout_seconds
(int, optional): Override the execution timeout for this requestmode
(string, optional): Either"inline"
(default) to stream file contents or"at_command"
to let Gemini CLI resolve@path
references itself
Example:
consult_gemini_with_files(
query="Analyze these auth files and suggest improvements",
directory="/path/to/project",
files=["src/auth.py", "src/models.py"],
model="pro",
timeout_seconds=180
)
Tip: When scanning large trees, switch to mode="at_command"
so the Gemini CLI handles file globbing and truncation natively.
# Simple research query
consult_gemini(
query="What authentication patterns are used in this project?",
directory="/Users/dev/my-project"
)
# Analyze specific files
consult_gemini_with_files(
query="Review these files and suggest security improvements",
directory="/Users/dev/my-project",
files=["src/auth.py", "src/middleware.py"],
model="pro"
)
# Compare multiple implementation files
consult_gemini_with_files(
query="Compare these database implementations and recommend the best approach",
directory="/Users/dev/my-project",
files=["src/db/postgres.py", "src/db/sqlite.py", "src/db/redis.py"],
mode="at_command"
)
- Inline transfers cap at ~256 KB per file and ~512 KB per request to avoid hangs.
- Oversized files are truncated to head/tail snippets with a warning in the MCP response.
- Tune the caps with environment variables (
GEMINI_BRIDGE_MAX_INLINE_TOTAL_BYTES
, etc.) or prefermode="at_command"
for bigger payloads.
- CLI-First: Direct subprocess calls to
gemini
command - Stateless: Each tool call is independent with no session state
- Adaptive Timeout: Defaults to 60 seconds but overridable per request or via env var
- Attachment Guardrails: Inline mode enforces lightweight limits;
@
mode delegates to Gemini CLI tooling - Simple Error Handling: Clear error messages with fail-fast approach
gemini-bridge/
├── src/
│ ├── __init__.py # Entry point
│ ├── __main__.py # Module execution entry point
│ └── mcp_server.py # Main MCP server implementation
├── .github/ # GitHub templates and workflows
├── pyproject.toml # Python package configuration
├── README.md # This file
├── CONTRIBUTING.md # Contribution guidelines
├── CODE_OF_CONDUCT.md # Community standards
├── SECURITY.md # Security policies
├── CHANGELOG.md # Version history
└── LICENSE # MIT license
# Install in development mode
pip install -e .
# Run directly
python -m src
# Test CLI availability
gemini --version
The server automatically integrates with Claude Code when properly configured through the MCP protocol.
# Install Gemini CLI
npm install -g @google/gemini-cli
# Authenticate
gemini auth login
# Test
gemini --version
- Verify Gemini CLI is properly authenticated
- Check network connectivity
- Ensure Claude Code MCP configuration is correct
- Check that the
gemini
command is in your PATH
- "CLI not available": Gemini CLI is not installed or not in PATH
- "Authentication required": Run
gemini auth login
- "Timeout after 60 seconds": Query took too long, try breaking it into smaller parts
We welcome contributions from the community! Please read our Contributing Guidelines for details on how to get started.
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
This project is licensed under the MIT License - see the LICENSE file for details.
See CHANGELOG.md for detailed version history.
- Issues: Report bugs or request features via GitHub Issues
- Discussions: Join the community discussion
- Documentation: Additional docs can be created in the
docs/
directory
Focus: A simple, reliable bridge between Claude Code and Gemini AI through the official CLI.