Skip to content

Fix for QActivations passed as an argument #553

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 25 additions & 9 deletions hls4ml/converters/keras_to_hls.py
Original file line number Diff line number Diff line change
Expand Up @@ -316,16 +316,32 @@ def keras_to_hls(config):
layer_list.append( layer )
if 'activation' in layer and layer['class_name'] not in activation_layers + recurrent_layers:# + qkeras_layers:
act_layer = {}
act_layer['name'] = layer['name'] + '_' + layer['activation']
act_layer['activation'] = layer['activation']
if 'activ_param' in layer:
act_layer['activ_param'] = layer['activ_param']
act_layer['class_name'] = layer['activation']
elif layer['activation'] == 'softmax':
act_layer['class_name'] = 'Softmax'
act_layer['axis'] = -1
# Workaround for QKeras activations passed as an argument
if isinstance(layer['activation'], dict):
act_details = layer['activation']
act_layer['class_name'] = 'QActivation'
act_layer['config'] = {
'name': layer['name'] + '_' + act_details['class_name'],
'activation': act_details['class_name']
}
act_layer, output_shape = layer_handlers['QActivation'](
act_layer,
None,
[output_shape],
reader,
config
)
else:
act_layer['class_name'] = 'Activation'
act_layer['name'] = layer['name'] + '_' + layer['activation']
act_layer['activation'] = layer['activation']
if 'activ_param' in layer:
act_layer['activ_param'] = layer['activ_param']
act_layer['class_name'] = layer['activation']
elif layer['activation'] == 'softmax':
act_layer['class_name'] = 'Softmax'
act_layer['axis'] = -1
else:
act_layer['class_name'] = 'Activation'
inputs_map[layer['name']] = act_layer['name']
if output_layers is not None and layer['name'] in output_layers:
output_layers = [act_layer['name'] if name == layer['name'] else name for name in output_layers]
Expand Down
17 changes: 12 additions & 5 deletions hls4ml/utils/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -177,14 +177,21 @@ def config_from_keras_model(model, granularity='model', default_precision='ap_fi

print('Layer name: {}, layer type: {}'.format(layer['name'], layer['class_name']))
layer_list.append( layer )
if 'activation' in layer['config'] and layer['class_name'] not in activation_layers + qkeras_layers:
if 'activation' in layer['config'] and layer['class_name'] not in activation_layers:
act_layer = {}
act_layer['name'] = layer['name'] + '_' + layer['config']['activation']
act_layer['class_name'] = 'Activation'
print(' -> Activation ({}), layer name: {}'.format(layer['config']['activation'], layer['name']))
act_details = layer['config']['activation']
if isinstance(act_details, dict):
precision = _get_precision_from_quantizer(act_details)
act_details = act_details['class_name']
act_layer['precision'] = {}
act_layer['precision']['result'] = precision
act_layer['class_name'] = 'QActivation'
else:
act_layer['class_name'] = 'Activation'
act_layer['name'] = layer['name'] + '_' + act_details
print(' -> Activation ({}), layer name: {}'.format(act_details, layer['name']))
layer_list.append(act_layer)


def make_layer_config(layer):
layer_config = {}
if layer['class_name'] in dense_layers + conv_layers + rnn_layers:
Expand Down
84 changes: 82 additions & 2 deletions test/pytest/test_qkeras.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,10 +6,10 @@
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from tensorflow.keras.models import Sequential, model_from_json
from tensorflow.keras.models import Sequential, Model, model_from_json
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.regularizers import l1
from tensorflow.keras.layers import Activation, BatchNormalization
from tensorflow.keras.layers import Activation, BatchNormalization, Input
from qkeras.qlayers import QDense, QActivation
from qkeras.quantizers import quantized_bits, quantized_relu, ternary, binary
from qkeras.utils import _add_supported_quantized_objects; co = {}; _add_supported_quantized_objects(co)
Expand Down Expand Up @@ -228,3 +228,83 @@ def test_quantizer(randX_1000_1, quantizer, backend):
y_hls4ml = hls_model.predict(X)
# Goal is to get it passing with all equal
np.testing.assert_array_equal(y_qkeras, y_hls4ml)


@pytest.mark.parametrize(
'weight_quantizer,activation_quantizer,', [
('binary', 'binary'),
('ternary', 'ternary'),
('quantized_bits(4, 0, alpha=1)', 'quantized_relu(2, 0)'),
('quantized_bits(4, 0, alpha=1)', 'quantized_relu(4, 0)'),
('quantized_bits(4, 0, alpha=1)', 'quantized_relu(8, 0)')
]
)
def test_qactivation_kwarg(randX_100_10,
activation_quantizer,
weight_quantizer):
if activation_quantizer in ['binary', 'ternary']:
name = 'bnbt_qdense_alpha'
else:
name = 'qdense_{}'.format(
eval(activation_quantizer).__class__.__name__)

inputs = Input(shape=(10,))

outputs = QDense(
10,
activation=activation_quantizer,
name='qdense',
kernel_quantizer=weight_quantizer,
bias_quantizer=weight_quantizer,
kernel_initializer='lecun_uniform'
)(inputs)
model = Model(inputs, outputs)

hls4ml.model.optimizer.get_optimizer(
'output_rounding_saturation_mode'
).configure(
layers=[name],
rounding_mode='AP_RND_CONV',
saturation_mode='AP_SAT'
)
config = hls4ml.utils.config_from_keras_model(
model,
granularity='name'
)

out_dir = str(
test_root_path / 'hls4mlprj_qactivation_kwarg_{}'.format(
activation_quantizer
)
)

hls_model = hls4ml.converters.convert_from_keras_model(
model,
hls_config=config,
output_dir=out_dir
)
hls4ml.model.optimizer.get_optimizer(
'output_rounding_saturation_mode'
).configure(layers=[])
hls_model.compile()

# Verify if activation in hls_model
assert name in [layer.name for layer in hls_model.get_layers()]

# Output tests
X = randX_100_10
X = np.round(X * 2**10) * 2**-10
y_qkeras = model.predict(X)
y_hls4ml = hls_model.predict(X)
if hasattr(eval(activation_quantizer), 'bits'):
np.testing.assert_allclose(
y_qkeras.ravel(),
y_hls4ml.ravel(),
atol=2**-eval(activation_quantizer).bits,
rtol=1.0
)
else:
if activation_quantizer == 'binary':
y_hls4ml = np.where(y_hls4ml == 0, -1, 1)
wrong = (y_hls4ml != y_qkeras).ravel()
assert sum(wrong) / len(wrong) <= 0.005