Skip to content

Quartus Streaming Softsign (PR #585 contd.) #655

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Sep 20, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -223,6 +223,8 @@ template<class data_T, class res_T, typename CONFIG_T>
void softsign(stream<data_T> &data, stream<res_T> &res) {
#include "activation_tables/softsign_table.tb"

static const int MAX_VALUE = 8;

SoftsignActLoop:
#pragma ii 1
for (int i = 0; i < CONFIG_T::n_in / res_T::size; i++) {
Expand All @@ -232,11 +234,21 @@ void softsign(stream<data_T> &data, stream<res_T> &res) {
SoftsignPackLoop:
#pragma unroll
for (int j = 0; j < res_T::size; j++) {
hls_register int data_round = (in_data[j]*CONFIG_T::table_size/16).to_int();
hls_register int index = data_round + 8*CONFIG_T::table_size/16;
if (index < 0) index = 0;
else if (index > CONFIG_T::table_size-1) index = CONFIG_T::table_size-1;
out_data[j] = softsign_table[index];
hls_register typename data_T::value_type absValue;;
if(in_data[j] < 0){
absValue = -in_data[j];
}
else{
absValue = in_data[j];
}
ac_int<16> index = (absValue * CONFIG_T::table_size / MAX_VALUE).to_int();
if (absValue > MAX_VALUE) index = CONFIG_T::table_size - 1;
if(in_data[j] < 0) {
out_data[j] = -(typename res_T::value_type) softsign_table[index];
}
else {
out_data[j] = (typename res_T::value_type) softsign_table[index];
}
}

res.write(out_data);
Expand Down
41 changes: 10 additions & 31 deletions test/pytest/test_softsign.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,48 +7,27 @@

test_root_path = Path(__file__).parent

def flat_distribution(shape):
return np.random.rand(*shape)


@pytest.fixture()
def generate_data(function, input_shape):
return function((1000, *input_shape))


# TODO: include latency strategy with flat_distribution when it can be made to pass
@pytest.mark.parametrize('backend,strategy,function,input_shape,io_type', [
('Vivado', 'stable', flat_distribution, (4,), 'io_parallel'),
('Quartus', 'stable', flat_distribution, (4,), 'io_parallel'),

# IO_stram avaliable just for VIVADO
('Vivado', 'stable', flat_distribution, (4,), 'io_stream'),
('Vivado', 'stable', flat_distribution, (4, 4, 3), 'io_stream')
@pytest.mark.parametrize('backend', ['Vivado', 'Quartus'])
@pytest.mark.parametrize('input_shape, io_type', [
((8, ), 'io_parallel'),
((8, ), 'io_stream'),
((8, 8, 3), 'io_stream')
])
def test_softsign(backend, strategy, generate_data, input_shape, io_type):
X = generate_data
def test_softsign(backend, input_shape, io_type):
X = np.random.rand(1000, *input_shape)
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Activation(input_shape=input_shape, activation='softsign', name='softsign'))
model.compile()

f_type = 'ac_fixed<18,8,true,AC_RND,AC_SAT>' if backend == 'Quartus' else 'ap_fixed<18,8,AP_RND,AP_SAT>'
cfg = hls4ml.utils.config_from_keras_model(model, granularity='name')
cfg['LayerName']['softsign']['Strategy'] = strategy
cfg['LayerName']['softsign']['inv_table_t'] = f_type
cfg['LayerName']['softsign']['exp_table_t'] = f_type

odir = str(test_root_path / 'hls4mlprj_softsign_{}'.format(strategy))
cfg = hls4ml.utils.config_from_keras_model(model, granularity='name')
odir = str(test_root_path / 'hls4mlprj_softsign_{}_{}_{}'.format(backend, io_type, str(input_shape)))
hls_model = hls4ml.converters.convert_from_keras_model(model, hls_config=cfg, io_type=io_type,
output_dir=odir, backend=backend)
hls_model.compile()

y_keras = model.predict(X)
y_hls4ml = hls_model.predict(X).reshape(y_keras.shape)

acc_hls4ml = accuracy_score(np.argmax(y_keras, axis=-1).ravel(), np.argmax(y_hls4ml, axis=-1).ravel())

print('Accuracy hls4ml relative to keras: {}'.format(acc_hls4ml))

assert acc_hls4ml >= 0.98


assert acc_hls4ml >= 0.97