Skip to content

[stdlib_math] add arg/argd/argpi #498

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Dec 19, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,11 @@ Features available from the latest git source
- new module `stdlib_io_npy`
[#581](https://github.com/fortran-lang/stdlib/pull/581)
- new procedures `save_npy`, `load_npy`
- update module `stdlib_math`
- new procedures `is_close` and `all_close`
[#488](https://github.com/fortran-lang/stdlib/pull/488)
- new procedures `arg`, `argd` and `argpi`
[#498](https://github.com/fortran-lang/stdlib/pull/498)

Changes to existing modules

Expand Down
125 changes: 123 additions & 2 deletions doc/specs/stdlib_math.md
Original file line number Diff line number Diff line change
Expand Up @@ -389,6 +389,129 @@ program demo_math_arange
end program demo_math_arange
```

### `arg` - Computes the phase angle in radian of a complex scalar

#### Status

Experimental

#### Class

Elemental function.

#### Description

`arg` computes the phase angle (radian version) of `complex` scalar in the interval (-π,π].
The angles in `θ` are such that `z = abs(z)*exp((0.0, θ))`.

#### Syntax

`result = [[stdlib_math(module):arg(interface)]](z)`

#### Arguments

`z`: Shall be a `complex` scalar/array.
This is an `intent(in)` argument.

#### Return value

Returns the `real` type phase angle (radian version) of the `complex` argument `z`.

Notes: Although the angle of the complex number `0` is undefined, `arg((0,0))` returns the value `0`.

#### Example

```fortran
program demo_math_arg
use stdlib_math, only: arg
print *, arg((0.0, 0.0)) !! 0.0
print *, arg((3.0, 4.0)) !! 0.927
print *, arg(2.0*exp((0.0, 0.5))) !! 0.5
end program demo_math_arg
```

### `argd` - Computes the phase angle in degree of a complex scalar

#### Status

Experimental

#### Class

Elemental function.

#### Description

`argd` computes the phase angle (degree version) of `complex` scalar in the interval (-180.0,180.0].
The angles in `θ` are such that `z = abs(z)*exp((0.0, θ*π/180.0))`.

#### Syntax

`result = [[stdlib_math(module):argd(interface)]](z)`

#### Arguments

`z`: Shall be a `complex` scalar/array.
This is an `intent(in)` argument.

#### Return value

Returns the `real` type phase angle (degree version) of the `complex` argument `z`.

Notes: Although the angle of the complex number `0` is undefined, `argd((0,0))` returns the value `0`.

#### Example

```fortran
program demo_math_argd
use stdlib_math, only: argd
print *, argd((0.0, 0.0)) !! 0.0
print *, argd((3.0, 4.0)) !! 53.1°
print *, argd(2.0*exp((0.0, 0.5))) !! 28.64°
end program demo_math_argd
```

### `argpi` - Computes the phase angle in circular of a complex scalar

#### Status

Experimental

#### Class

Elemental function.

#### Description

`argpi` computes the phase angle (IEEE circular version) of `complex` scalar in the interval (-1.0,1.0].
The angles in `θ` are such that `z = abs(z)*exp((0.0, θ*π))`.

#### Syntax

`result = [[stdlib_math(module):argpi(interface)]](z)`

#### Arguments

`z`: Shall be a `complex` scalar/array.
This is an `intent(in)` argument.

#### Return value

Returns the `real` type phase angle (circular version) of the `complex` argument `z`.

Notes: Although the angle of the complex number `0` is undefined, `argpi((0,0))` returns the value `0`.

#### Example

```fortran
program demo_math_argpi
use stdlib_math, only: argpi
print *, argpi((0.0, 0.0)) !! 0.0
print *, argpi((3.0, 4.0)) !! 0.295
print *, argpi(2.0*exp((0.0, 0.5))) !! 0.159
end program demo_math_argpi
```

### `is_close`

#### Description
Expand Down Expand Up @@ -449,7 +572,6 @@ Returns a `logical` scalar/array.
program demo_math_is_close

use stdlib_math, only: is_close
use stdlib_error, only: check
real :: x(2) = [1, 2], y, NAN

y = -3
Expand Down Expand Up @@ -514,7 +636,6 @@ Returns a `logical` scalar.
program demo_math_all_close

use stdlib_math, only: all_close
use stdlib_error, only: check
real :: x(2) = [1, 2], y, NAN
complex :: z(4, 4)

Expand Down
64 changes: 63 additions & 1 deletion src/stdlib_math.fypp
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ module stdlib_math
public :: EULERS_NUMBER_QP
#:endif
public :: DEFAULT_LINSPACE_LENGTH, DEFAULT_LOGSPACE_BASE, DEFAULT_LOGSPACE_LENGTH
public :: arange, is_close, all_close
public :: arange, arg, argd, argpi, is_close, all_close

integer, parameter :: DEFAULT_LINSPACE_LENGTH = 100
integer, parameter :: DEFAULT_LOGSPACE_LENGTH = 50
Expand All @@ -27,6 +27,11 @@ module stdlib_math
real(qp), parameter :: EULERS_NUMBER_QP = exp(1.0_qp)
#:endif

!> Useful constants `PI` for `argd/argpi`
#:for k1 in REAL_KINDS
real(kind=${k1}$), parameter :: PI_${k1}$ = acos(-1.0_${k1}$)
#:endfor

interface clip
#:for k1, t1 in IR_KINDS_TYPES
module procedure clip_${k1}$
Expand Down Expand Up @@ -296,6 +301,34 @@ module stdlib_math

!> Version: experimental
!>
!> `arg` computes the phase angle in the interval (-π,π].
!> ([Specification](../page/specs/stdlib_math.html#arg))
interface arg
#:for k1 in CMPLX_KINDS
procedure :: arg_${k1}$
#:endfor
end interface arg

!> Version: experimental
!>
!> `argd` computes the phase angle of degree version in the interval (-180.0,180.0].
!> ([Specification](../page/specs/stdlib_math.html#argd))
interface argd
#:for k1 in CMPLX_KINDS
procedure :: argd_${k1}$
#:endfor
end interface argd

!> Version: experimental
!>
!> `argpi` computes the phase angle of circular version in the interval (-1.0,1.0].
!> ([Specification](../page/specs/stdlib_math.html#argpi))
interface argpi
#:for k1 in CMPLX_KINDS
procedure :: argpi_${k1}$
#:endfor
end interface argpi

!> Returns a boolean scalar/array where two scalar/arrays are element-wise equal within a tolerance.
!> ([Specification](../page/specs/stdlib_math.html#is_close))
interface is_close
Expand Down Expand Up @@ -341,6 +374,34 @@ contains

#:endfor

#:for k1, t1 in CMPLX_KINDS_TYPES
elemental function arg_${k1}$(z) result(result)
${t1}$, intent(in) :: z
real(${k1}$) :: result

result = merge(0.0_${k1}$, atan2(z%im, z%re), z == (0.0_${k1}$, 0.0_${k1}$))

end function arg_${k1}$

elemental function argd_${k1}$(z) result(result)
${t1}$, intent(in) :: z
real(${k1}$) :: result

result = merge(0.0_${k1}$, atan2(z%im, z%re), z == (0.0_${k1}$, 0.0_${k1}$)) &
*180.0_${k1}$/PI_${k1}$

end function argd_${k1}$

elemental function argpi_${k1}$(z) result(result)
${t1}$, intent(in) :: z
real(${k1}$) :: result

result = merge(0.0_${k1}$, atan2(z%im, z%re), z == (0.0_${k1}$, 0.0_${k1}$)) &
/PI_${k1}$

end function argpi_${k1}$
#:endfor

#:for k1, t1 in INT_KINDS_TYPES
!> Returns the greatest common divisor of two integers of kind ${k1}$
!> using the Euclidean algorithm.
Expand All @@ -361,4 +422,5 @@ contains
end function gcd_${k1}$

#:endfor

end module stdlib_math
1 change: 0 additions & 1 deletion src/tests/math/Makefile.manual
Original file line number Diff line number Diff line change
Expand Up @@ -9,5 +9,4 @@ PROGS_SRC = test_linspace.f90 test_logspace.f90 \
$(SRCGEN): %.f90: %.fypp ../../common.fypp
fypp -I../.. $(FYPPFLAGS) $< $@


include ../Makefile.manual.test.mk
72 changes: 71 additions & 1 deletion src/tests/math/test_stdlib_math.fypp
Original file line number Diff line number Diff line change
Expand Up @@ -4,11 +4,15 @@

module test_stdlib_math
use testdrive, only : new_unittest, unittest_type, error_type, check, skip_test
use stdlib_math, only: clip, is_close, all_close
use stdlib_math, only: clip, arg, argd, argpi, arange, is_close, all_close
use stdlib_kinds, only: int8, int16, int32, int64, sp, dp, xdp, qp
implicit none

public :: collect_stdlib_math

#:for k1 in REAL_KINDS
real(kind=${k1}$), parameter :: PI_${k1}$ = acos(-1.0_${k1}$)
#:endfor

contains

Expand All @@ -33,6 +37,13 @@ contains
new_unittest("clip-real-quad", test_clip_rqp), &
new_unittest("clip-real-quad-bounds", test_clip_rqp_bounds) &

!> Tests for arg/argd/argpi
#:for k1 in CMPLX_KINDS
, new_unittest("arg-cmplx-${k1}$", test_arg_${k1}$) &
, new_unittest("argd-cmplx-${k1}$", test_argd_${k1}$) &
, new_unittest("argpi-cmplx-${k1}$", test_argpi_${k1}$) &
#:endfor

!> Tests for `is_close` and `all_close`
#:for k1 in REAL_KINDS
, new_unittest("is_close-real-${k1}$", test_is_close_real_${k1}$) &
Expand Down Expand Up @@ -211,7 +222,66 @@ contains
#:endif

end subroutine test_clip_rqp_bounds

#:for k1 in CMPLX_KINDS
subroutine test_arg_${k1}$(error)
type(error_type), allocatable, intent(out) :: error
real(${k1}$), parameter :: tol = sqrt(epsilon(1.0_${k1}$))
real(${k1}$), allocatable :: theta(:)

#! For scalar
call check(error, abs(arg(2*exp((0.0_${k1}$, 0.5_${k1}$))) - 0.5_${k1}$) < tol, &
"test_nonzero_scalar")
if (allocated(error)) return
call check(error, abs(arg((0.0_${k1}$, 0.0_${k1}$)) - 0.0_${k1}$) < tol, &
"test_zero_scalar")

#! and for array (180.0° see scalar version)
theta = arange(-179.0_${k1}$, 179.0_${k1}$, 3.58_${k1}$)
call check(error, all(abs(arg(exp(cmplx(0.0_${k1}$, theta/180*PI_${k1}$, ${k1}$))) - theta/180*PI_${k1}$) < tol), &
"test_array")

end subroutine test_arg_${k1}$

subroutine test_argd_${k1}$(error)
type(error_type), allocatable, intent(out) :: error
real(${k1}$), parameter :: tol = sqrt(epsilon(1.0_${k1}$))
real(${k1}$), allocatable :: theta(:)

#! For scalar
call check(error, abs(argd((-1.0_${k1}$, 0.0_${k1}$)) - 180.0_${k1}$) < tol, &
"test_nonzero_scalar")
if (allocated(error)) return
call check(error, abs(argd((0.0_${k1}$, 0.0_${k1}$)) - 0.0_${k1}$) < tol, &
"test_zero_scalar")

#! and for array (180.0° see scalar version)
theta = arange(-179.0_${k1}$, 179.0_${k1}$, 3.58_${k1}$)
call check(error, all(abs(argd(exp(cmplx(0.0_${k1}$, theta/180*PI_${k1}$, ${k1}$))) - theta) < tol), &
"test_array")

end subroutine test_argd_${k1}$

subroutine test_argpi_${k1}$(error)
type(error_type), allocatable, intent(out) :: error
real(${k1}$), parameter :: tol = sqrt(epsilon(1.0_${k1}$))
real(${k1}$), allocatable :: theta(:)

#! For scalar
call check(error, abs(argpi((-1.0_${k1}$, 0.0_${k1}$)) - 1.0_${k1}$) < tol, &
"test_nonzero_scalar")
if (allocated(error)) return
call check(error, abs(argpi((0.0_${k1}$, 0.0_${k1}$)) - 0.0_${k1}$) < tol, &
"test_zero_scalar")

#! and for array (180.0° see scalar version)
theta = arange(-179.0_${k1}$, 179.0_${k1}$, 3.58_${k1}$)
call check(error, all(abs(argpi(exp(cmplx(0.0_${k1}$, theta/180*PI_${k1}$, ${k1}$))) - theta/180) < tol), &
"test_array")

end subroutine test_argpi_${k1}$
#:endfor

#:for k1 in REAL_KINDS
subroutine test_is_close_real_${k1}$(error)
type(error_type), allocatable, intent(out) :: error
Expand Down