Closed
Description
I am trying to apply constrained decoding for the recently adopted command-r.
Using the most recent master branch (c47cf41) I'm trying to apply the simplest list.
./main -m ~/data/c4ai-command-r-v01/ggml-model-Q4_K_M.gguf -p "<BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Please give me a list of things to do in SF?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" -ctk q8_0 -ngl 99 -n 500 --grammar-file grammars/list.gbnf
It fails with
libc++abi: terminating due to uncaught exception of type std::out_of_range: unordered_map::at: key not found
Any idea what could go wrong here?
More details:
Log start
main: build = 2447 (c47cf414)
main: built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.3.0
main: seed = 1710686911
llama_model_loader: loaded meta data with 23 key-value pairs and 322 tensors from ~/data/c4ai-command-r-v01/ggml-model-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = command-r
llama_model_loader: - kv 1: general.name str = c4ai-command-r-v01
llama_model_loader: - kv 2: command-r.block_count u32 = 40
llama_model_loader: - kv 3: command-r.context_length u32 = 8192
llama_model_loader: - kv 4: command-r.embedding_length u32 = 8192
llama_model_loader: - kv 5: command-r.feed_forward_length u32 = 22528
llama_model_loader: - kv 6: command-r.attention.head_count u32 = 64
llama_model_loader: - kv 7: command-r.attention.head_count_kv u32 = 64
llama_model_loader: - kv 8: command-r.rope.freq_base f32 = 8000000.000000
llama_model_loader: - kv 9: command-r.attention.layer_norm_epsilon f32 = 0.000010
llama_model_loader: - kv 10: general.file_type u32 = 15
llama_model_loader: - kv 11: command-r.logit_scale f32 = 0.062500
llama_model_loader: - kv 12: command-r.rope.scaling.type str = none
llama_model_loader: - kv 13: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 14: tokenizer.ggml.tokens arr[str,256000] = ["<PAD>", "<UNK>", "<CLS>", "<SEP>", ...
llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,256000] = [3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, ...
llama_model_loader: - kv 16: tokenizer.ggml.merges arr[str,253333] = ["Ġ Ġ", "Ġ t", "e r", "i n", "Ġ a...
llama_model_loader: - kv 17: tokenizer.ggml.bos_token_id u32 = 5
llama_model_loader: - kv 18: tokenizer.ggml.eos_token_id u32 = 255001
llama_model_loader: - kv 19: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 20: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 21: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 22: general.quantization_version u32 = 2
llama_model_loader: - type f32: 41 tensors
llama_model_loader: - type q4_K: 240 tensors
llama_model_loader: - type q6_K: 41 tensors
llm_load_vocab: special tokens definition check successful ( 1008/256000 ).
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = command-r
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 256000
llm_load_print_meta: n_merges = 253333
llm_load_print_meta: n_ctx_train = 8192
llm_load_print_meta: n_embd = 8192
llm_load_print_meta: n_head = 64
llm_load_print_meta: n_head_kv = 64
llm_load_print_meta: n_layer = 40
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 8192
llm_load_print_meta: n_embd_v_gqa = 8192
llm_load_print_meta: f_norm_eps = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 0.0e+00
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 6.2e-02
llm_load_print_meta: n_ff = 22528
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = none
llm_load_print_meta: freq_base_train = 8000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx = 8192
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: model type = 35B
llm_load_print_meta: model ftype = Q4_K - Medium
llm_load_print_meta: model params = 34.98 B
llm_load_print_meta: model size = 20.04 GiB (4.92 BPW)
llm_load_print_meta: general.name = c4ai-command-r-v01
llm_load_print_meta: BOS token = 5 '<BOS_TOKEN>'
llm_load_print_meta: EOS token = 255001 '<|END_OF_TURN_TOKEN|>'
llm_load_print_meta: PAD token = 0 '<PAD>'
llm_load_print_meta: LF token = 136 'Ä'
llm_load_tensors: ggml ctx size = 0.25 MiB
ggml_backend_metal_buffer_from_ptr: allocated buffer, size = 20519.42 MiB, (20519.48 / 147456.00)
llm_load_tensors: offloading 40 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 41/41 layers to GPU
llm_load_tensors: Metal buffer size = 20519.41 MiB
llm_load_tensors: CPU buffer size = 1640.62 MiB
.......................................................................................
llama_new_context_with_model: n_ctx = 512
llama_new_context_with_model: n_batch = 512
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: freq_base = 8000000.0
llama_new_context_with_model: freq_scale = 1
ggml_metal_init: allocating
ggml_metal_init: found device: Apple M2 Ultra
ggml_metal_init: picking default device: Apple M2 Ultra
ggml_metal_init: default.metallib not found, loading from source
ggml_metal_init: GGML_METAL_PATH_RESOURCES = nil
ggml_metal_init: loading '[...]src/llama.cpp/ggml-metal.metal'
ggml_metal_init: GPU name: Apple M2 Ultra
ggml_metal_init: GPU family: MTLGPUFamilyApple8 (1008)
ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
ggml_metal_init: simdgroup reduction support = true
ggml_metal_init: simdgroup matrix mul. support = true
ggml_metal_init: hasUnifiedMemory = true
ggml_metal_init: recommendedMaxWorkingSetSize = 154618.82 MB
ggml_backend_metal_buffer_type_alloc_buffer: allocated buffer, size = 490.00 MiB, (21011.30 / 147456.00)
llama_kv_cache_init: Metal KV buffer size = 490.00 MiB
llama_new_context_with_model: KV self size = 490.00 MiB, K (q8_0): 170.00 MiB, V (f16): 320.00 MiB
llama_new_context_with_model: CPU output buffer size = 500.00 MiB
ggml_backend_metal_buffer_type_alloc_buffer: allocated buffer, size = 516.00 MiB, (21527.30 / 147456.00)
llama_new_context_with_model: Metal compute buffer size = 516.00 MiB
llama_new_context_with_model: CPU compute buffer size = 17.00 MiB
llama_new_context_with_model: graph splits: 2
system_info: n_threads = 16 / 24 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 0 |
sampling:
repeat_last_n = 64, repeat_penalty = 1.100, frequency_penalty = 0.000, presence_penalty = 0.000
top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, typical_p = 1.000, temp = 0.800
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampling order:
CFG -> Penalties -> top_k -> tfs_z -> typical_p -> top_p -> min_p -> temperature
generate: n_ctx = 512, n_batch = 2048, n_predict = 500, n_keep = 1
<|START_OF_TURN_TOKEN|><|USER_TOKEN|>Please give me a list of things to do in SF?<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>libc++abi: terminating due to uncaught exception of type std::out_of_range: unordered_map::at: key not found